![2021-2022学年冀教版八年级数学下册第二十章函数重点解析练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12765603/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十章函数重点解析练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12765603/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第二十章函数重点解析练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12765603/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
八年级下册第二十章 函数综合与测试练习
展开
这是一份八年级下册第二十章 函数综合与测试练习,共24页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:)表示注入容器内的水量,则表示V与h的函数关系的图象大致是( )A. B.C. D.2、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①3、甲、乙两只气球分别从不同高度同时匀速上升30min,气球所在的位置距离地面的高度h(单位:m)与气球上升的时间t(单位:min)之间的函数关系式如图所示.下列说法正确的是( )A.10min时,两只气球都上升了30m B.乙气球的速度为3m/minC.30min时,乙气球离地面的高度为60m D.30min时,甲乙两只气球的高度差为20m4、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是( )A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米C.小南到达景区时共用时7.5小时 D.家距离景区共400千米5、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示6、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道处匀速跑往处,乙同学从处匀速跑往处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为(秒),甲、乙两人之间的距离为(米),与之间的函数关系如图所示,则图中的值是( )A. B.18 C. D.207、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )A.y=n(+0.6) B.y=n()+0.6C.y=n(+0.6) D.y=n()+0.68、甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )A. B.C. D.9、函数的自变量x的取值范围是( )A.x>5 B.x<5 C.x≠5 D.x≥-510、下列图象表示y是x的函数的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数的定义域是 _____.2、在中,的取值范围为______.3、在函数中,自变量x的取值范围是______.4、在、两地之间有汽车站在直线上),甲车由地驶往站,乙车由地驶往地,两车同时出发,匀速行驶.甲、乙两车离站的路程,(千米)与行驶时间(小时)之间的函数图象如图所示,则下列结论:①、两地相距440千米;②甲车的平均速度是60千米时;③乙车行驶11小时后到达地;④两车行驶4.4小时后相遇,其中正确的结论有是___.(填序号)5、国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程(米)与出发的时间(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点__________米.三、解答题(5小题,每小题10分,共计50分)1、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x……-4-3-2-101234567……y……a4b……(1)请直接写出上述表中、的值:a= ,b= ;(2)请在给出的图中补全该函数的大致图象;(3)请根据这个函数的图象,写出该函数的一条性质: ;(4)已知函数的图象如图所示,在的范围内,请直接不等式的解集: .(保留一位小数,误差不超过0.2).2、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图.(1)爷爷这一天从公园返回到家用多长时间?(2)爷爷散步时最远离家多少米?(3)爷爷在公园锻炼多长时间?(4)直接写出爷爷在出发后多长时间离家450m.3、有这样一个问题:探究函数的图象与性质小明根据学习函数的经验,对函数的图象与性质进行了探究:下面是小明的探究过程,请补充完整(1)函数的自变量的取值范围是 (2)下表是与的几组对应值…………求的值(3)如图,在坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象(4)进一步探究发现该函数的性质:当 时,随的增大而增大4、下表是小华做观察水的沸腾实验时所记录的数据:时间(分)0123456789101112温度(℃)6065707580859095100100100100100(1)时间是8分钟时,水的温度为_____;(2)此表反映了变量_____和_____之间的关系,其中_____是自变量,_____是因变量;5、如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系. 根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少? -参考答案-一、单选题1、B【解析】【分析】根据容器的形状可知当液面高度越高时,体积的变化越小,即随着的增大,增大的速度变缓,结合选项即可求解【详解】解:容器的形状可知,底部最大,刚开始当增大时,体积增大较快,但随着的增大,增大的速度变缓,表现出的函数图象即为:函数图象先陡,后缓,结合选项只有B选项符合题意;故选B【点睛】本题考查了函数图象的判断,根据容器的形状以及题意判断函数图象先陡,后缓是解题的关键.2、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.3、D【解析】【分析】根据题意和函数中的数据,可以计算出甲、乙两只气球的速度,然后即可判断各个选项中的说法是否正确.【详解】解:由图象可得,10min时,甲气球上升了m,乙气球上升了−=20(m),故选项A错误;甲气球的速度为:÷=(m/ min),乙气球的速度为:(−)÷=(m/ min),故选项B错误;30min时,乙气球距离地面的高度是+(m),故选项C错误;则30min时,两架无人机的高度差为:()−(+)=20(m),故选项D正确;故选:D.【点睛】本题考查一次函数的应用,计算出甲、乙两架无人机的速度是解答本题的关键,利用数形结合的思想解答.4、B【解析】【分析】先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.【详解】解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,故选项A正确;设小南t小时追上小开,50(2+1+0.5+t)=100t,解得t=3.5,∴100×3.5=350千米,故选项B不正确;50(2+1+0.5+t+0.5)=100t,解得t=4,∴小南到达景区时共用2+1+0.5+4=7.5小时,故选项C正确;∵100×4=400千米,∴家距离景区共400千米,故选项D正确.故选B.【点睛】本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.5、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.6、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.【详解】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=,故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.7、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A.【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.8、C【解析】【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【详解】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点睛】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.9、D【解析】【分析】根据二次根式有意义的条件即可得出答案.【详解】解:∵函数,∴,解得:,故选:D.【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.10、D【解析】【分析】根据函数的定义,按照一一对应的原则去判断即可. 当任意一个都有唯一的一个与之对应,则称是的函数.【详解】当任意一个都有唯一的一个与之对应,则称是的函数.由图象可知:A,B,C选项都不符合题意,D选项符合题意.故选D.【点睛】本题考查了函数的图像表示法,正确理解变量之间的一一对应思想是解题的关键.二、填空题1、x≠0【解析】【分析】由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.【详解】解:函数的定义域是:x≠0.故答案为:x≠0.【点睛】本题考查求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2、x>-3【解析】【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得:2x+6>0,解得:x>-3,故答案为:x>-3.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.3、【解析】【分析】根据分母不为零和二次根式的非负性计算即可;【详解】根据题意可得:且,∴;故答案是:.【点睛】本题主要考查了函数自变量取值范围,准确计算是解题的关键.4、①②③④【解析】【分析】根据题意结合图象确定符合甲乙行驶路线的函数图象,然后依次进行求解判断即可得出【详解】解:A、B两地相距:(千米),故①正确,甲车的平均速度:(千米小时),故②正确,乙车的平均速度:千米小时,(小时),乙车行驶11小时后到达A地,故③正确,设t小时相遇,则有:,解得:(小时),两车行驶4.4小时后相遇,故④正确,故答案为:①②③④.【点睛】题目主要考查根据函数图象获取信息进行求解及一元一次方程的应用,理解题意,结合图象确定符合甲乙行驶路线的函数图象是解题关键.5、204.【解析】【分析】设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,利用70秒相距70米,得出v1=v2+1,利用小一500秒到终点,求出v2,,再求出小一到终点时,小艾距终点的路程,利用两者相向而行510米所用时间即可【详解】解:∵70秒时,两人相距70米,然后小艾休息,小一追上,说明小艾速度快,设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,∴70v1-70v2=70,∴v1=v2+1,小一欢骑自行车到乐谷,用500秒,小一的速度为2000÷500=4米/秒,∴小艾的速度为5米/秒,小艾在路旁休息了4分钟后再次出发,以1.2×5=6米/秒的速度冲向终点,2000-70×5-[500-(70+4×60)]×6=2000-350-1140=510米,当小一到终点时,小艾距终点510米,小一返回与小艾相遇时间为:510÷(4+6)=51秒,此时距终点51×4=204米.故答案为204.【点睛】本题考查利用函数图像获取信息,掌握图像的这点含义是解题关键.三、解答题1、(1),;(2)图像见解析;(3)函数图像与x轴没有交点,且函数值都大于0(答案不唯一);(4)【解析】【分析】(1)将x=0,3分别代入解析式即可得y的值,即可求出a、b的值;(2)描点、连线即可;(3)观察函数图象即可求得;(4)观察函数图像,先确定的范围内的交点,再由上下位置比较大小即可.【详解】(1)把代入解析式得;把代入解析式得故答案为:,;(2)函数图像如图:(3)由函数图像可知:函数图像与x轴没有交点,且函数值都大于0(答案不唯一)(4)由图象可知:在的范围内的解集为.【点睛】本题主要考查函数的图象和性质,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.2、(1)15;(2)900;(3)10;(4)10分钟或分钟【解析】【分析】(1)根据图中表示可得结果;(2)根据图象可知最远就是到公园的距离;(3)根据图象可得平行的部分就是在公园的时间;(4)求出相应直线的函数解析式,即可得解;【详解】(1)由图可知,时间为(分);(2)由图可知,最远离家900米;(3)爷爷在公园锻炼的时间(分);(4)如图,设直线AB所在解析式为,把点代入可得:,∴解析式为,当时,;设直线CD所在解析式为,把点,代入得,,解得,∴解析式为,当时,;∴爷爷在出发后10分钟或分钟离家450m.【点睛】本题主要考查了函数图像的应用,准确分析计算是解题的关键.3、 (1)全体实数(2)1(3)图像见解析(4)>2【解析】【分析】(1)根据题目中的函数解析式,可以得到x的取值范围;(2)将x=4代入函数解析式,即可得到y的值;(3)根据表格中的数据,可以画出相应的函数图象;(4)根据函数图象,可以写出当x为何值时,y随x的增大而增大.(1)函数的自变量x的取值范围是全体实数,故答案为:全体实数;(2)当x=4时,,即m的值是1;(3)如下图所示,(4)由图象可得,当x>2时,y随x的增大而增大,故答案为:>2.【点睛】本题考用描点法画函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4、(1)100℃;(2)温度,时间,时间,温度【解析】【分析】(1)根据表格中的数据求解即可;(2)观察表格可知,反映的是温度随时间的变化而变化由此即可得到答案.【详解】解:(1)观察表格可知:第8分钟时水的温度为100℃;(2)观察表格可知反映的是温度随着时间的变化而变化的,时间是自变量,温度是因变量;故答案为(1)100℃;(2)温度,时间,时间,温度.【点睛】本题主要考查了用表格表示变量之间的关系,解题的关键在于能够熟练掌握自变量与因变量的定义.5、(1),;(2);(3),;(4);(5),【解析】【分析】小明离家的距离y是时间x的函数,由图象中有两段平行于x轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里,由此结合图形分析即可解答.【详解】解:(1)由纵坐标看出,食堂离小明家;由横坐标看出,小明从家到食堂用了.(2)由横坐标看出,,小明吃早餐用了.(3)由纵坐标看出,,食堂离图书馆;由横坐标看出,,小明从食堂到图书馆用了.(4)由横坐标看出,,小明读报用了.(5)由纵坐标看出,图书馆离小明家;由横坐标看出,,小明从图书馆回家用了,由此算出平均速度是.【点睛】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共18页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题,共22页。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共24页。