初中数学第二十章 函数综合与测试达标测试
展开
这是一份初中数学第二十章 函数综合与测试达标测试,共22页。
冀教版八年级数学下册第二十章函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A.1个 B.2个 C.3个 D.4个2、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道处匀速跑往处,乙同学从处匀速跑往处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为(秒),甲、乙两人之间的距离为(米),与之间的函数关系如图所示,则图中的值是( )A. B.18 C. D.203、如图所示,下列各曲线中表示是的函数的有()A.1个 B.2个 C.3个 D.4个4、下列各图表示y是x的函数的图象是( )A. B.C. D.5、下列关系中,一定能称是x的函数的是( )A.y2=4x B.|y|=x-2 C.y=|x|-3 D.y4=64x6、小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是:( )A.爷爷比小强先出发20分钟B.小强爬山的速度是爷爷的2倍C.表示的是爷爷爬山的情况,表示的是小强爬山的情况D.山的高度是480米7、变量x与y之间的关系是,当时,自变量x的值是( )A.13 B.5 C.2 D.38、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是( )v(m/s)25155﹣5t(s)0123A.v=25t B.v=﹣10t+25 C.v=t2+25 D.v=5t+109、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是( )A.1 B.2 C.3 D.410、下列各自线中表示y是x的函数的是( )A. B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在函数中,自变量x的取值范围是______.2、若球体体积为,半径为,则.其中变量是_______、_______,常量是________.3、小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行____________米.4、定义:用_______来表示函数关系的方法叫做解析式法.特点:解析式法简单明了,能够准确的反映整个变化过程中自变量与函数之间的对应关系,但有些实际问题中的函数关系,不能用解析式表示,如气温与时间的函数关系.5、山西近期遭遇严重洪涝灾害,万余间房屋倒塌.下图是汾河沿线某个村庄的受灾情况和蓝天救援队的排涝现场.某地需排水约,打开排水泵开始排水,排走的水量与排水时间的关系如下表所示.排水分钟后,剩下水量为________.排水时间/分钟…剩下的水量/… 三、解答题(5小题,每小题10分,共计50分)1、某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.(1)当月用电量不超过200时,y与x的函数关系式为 ,当月用电量超过200度时,y与x的函数关系式为 .(2)小新家十月份用电量为160度,求本月应交电费多少元?(3)小明家十月份交纳电费117元,求本月用电多少度?2、长方形的一边长是,其邻边长为,周长是,面积为.(1)写出和之间的关系式(2)写出和之间的关系式(3)当时,等于多少等于多少(4)当增加时,增加多少增加多少3、如果用c表示摄氏温度(),f表示华氏温度(),则c和f之间的关系是:.某日伦敦和纽约的最高气温分别为和,请把它们换算成摄氏温度.4、数学家欧拉最先把关于的多项式用记号来表示,例如,并把常数时多项式的值用来表示,例如时多项式的值记为.(1)若规定,①的值是_________;②若,的值是_________;(2)若规定,.①有没有能使成立的的值,若有,求出此时的值,若没有,请说明理由,②直接写出的最小值和此时满足的条件.5、甲、乙两车从城出发沿一条笔直公路匀速行驶至城,在整个行驶过程中,甲、乙两车离开城的距离与甲车行驶的时间之间的函数关系如图所示.(1)、两城相距_____千米,乙车比甲车早到______小时;(2)求出点坐标;(3)两车都在行驶的过程中,当甲、乙两车相距40千米时,_____. -参考答案-一、单选题1、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;由小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A地千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.2、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.【详解】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=,故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.3、C【解析】【分析】由题意依据函数的定义对各个函数图形进行分析判断即可得出答案.【详解】解:由对于的每一个确定的值,都有唯一确定的值与其对应可知,①、②、③表示是的函数,④不构成函数关系,共有3个.故选:C.【点睛】本题考查函数的识别,注意掌握在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数.4、D【解析】【详解】解:A、不是的函数的图象,此项不符题意;B、不是的函数的图象,此项不符题意;C、不是的函数的图象,此项不符题意;D、是的函数的图象,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)是解题关键.5、C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数.【详解】解:根据函数概念可得:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应可得C中y是x的函数,故选:C.【点睛】此题主要考查了函数的概念,关键是掌握函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6、B【解析】【分析】由爷爷先出发,可以判断C,再根据图象上点的坐标含义分别计算出爷爷与小强的爬山速度,从而可判断A,B,根据图象上点的坐标含义同时可判断D,从而可得答案.【详解】解: 爷爷先出发一段时间后小强再出发,分别表示小强与爷爷的爬山信息,故C不符合题意;由的图象可得:小强爬山的速度为:米/分,由的图象可得:爷爷爬山的速度为:米/分,所以分钟,故A不符合题意;小强爬山的速度是爷爷的2倍,故B符合题意;由图象可得:山的高度是720米,故D不符合题意;故选B【点睛】本题考查的是从函数图象中获取信息,掌握“函数图象上点的坐标含义”是解本题的关键.7、C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.8、B【解析】【分析】根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.【详解】解:A、当时,,不满足,故此选项不符合题意;B、当时,,满足,当时,,满足,当时,,满足,当时,,满足,故此选项符合题意;C、当时,,不满足,故此选项符合题意;D、当时,,不满足,故此选项符合题意;故选B.【点睛】本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.9、B【解析】【分析】根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.【详解】解:由题意和图象可知, A、B港口相距400km,故①正确;∵甲船的速度是乙船的1.25倍, ∴乙船的速度为:100÷1.25=80(km/h), ∵乙船的速度为80km/h, ∴400÷80=(400+)÷100-1, 解得:=200km, 故②错误; ∵甲船4个小时行驶了400km, ∴甲船的速度为:400÷4=100(km/h), 故③正确; 乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km), 故④错误.故选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.10、C【解析】【分析】根据函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)逐项判断即可得.【详解】解:A、一个的值对应两个或三个的值,则此项不符题意;B、一个的值对应一个或两个的值,则此项不符题意;C、任意一个都有唯一确定的一个和它对应,则此项符合题意;D、一个的值对应一个或两个的值,则此项不符题意;故选:C.【点睛】本题考查了函数,掌握理解函数的概念是解题关键.二、填空题1、【解析】【分析】根据分式有意义的条件即可求得自变量x的取值范围.【详解】有意义的条件自变量x的取值范围是故答案为:【点睛】本题考查了分式有意义的条件,函数的自变量取值范围,掌握分式有意义的条件是解题的关键.2、 【解析】【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为,∴是自变量,是因变量,是常量.故答案为:,,.【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.3、50【解析】【分析】根据总路程÷回家用的时间即可求解.【详解】解:小明回家用了15-5=10分钟,总路程为500,故小明回家的速度为:500÷10=50(米/分),故答案为50.【点睛】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.4、解析式【解析】略5、26【解析】【分析】根据题意可得剩下的水量y=50−2t,故可求出放水12分钟后的水量.【详解】解:设剩下的水量为y,时间为t,则可得y=50−2t,∴放水12分钟后,水池中剩下的水量为:y=50−2×12=26m3,故答案为:26.【点睛】本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式.三、解答题1、(1),;(2)88;(3)【解析】【分析】(1)时,电费就是0.55乘以相应度数;时,电费超过200的度数;(2)把160代入得到的函数求解即可;(3)把117代入得到的函数求解即可.【详解】解:(1)当时,与的函数解析式是;当时,与的函数解析式是,即;故答案为:,(2)(元)答:小明家4月份应交电费145元.(3)因为小明家5月份的电费超过110元,所以把代入中,得.答:小明家5月份用电210度.【点睛】本题考查一次函数的应用,正确的列出函数关系是解题的关键.2、(1);(2);(3),;(4)当增加时,增加,增加【解析】【分析】(1)根据长方形周长公式进行求解即可;(2)根据长方形面积公式进行求解即可;(3)根据(2)求得的结果把代入先求出x的值,即可求值y的值;(4)把代入(1)(2)中求得的y以及S关于x的表达式中求出变化后的周长和面积,由此求解即可.【详解】解:(1)由长方形的周长公式,得.(2)由长方形的面积公式,得.(3)∵,时,∴,∴.(4)当增加时,,,∵,∴增加,增加.【点睛】本题主要考查了列代数式,整式的加减计算,代数式求值,解一元一次方程,解题的关键在于能够根据题意列出关于周长和面积的代数式.3、,【解析】【分析】分别把华氏温度代入关系式计算即可得到答案.【详解】解:将代入中,解得:,将代入中,解得:,所以伦敦和纽约的温度换算成摄氏温度为:摄氏度,摄氏度.【点睛】本题考查了函数值的求解,将自变量的值代入函数关系式中即可,解题的关键是计算正确.4、 (1)①-5;②5,(2)①有,x=,见解析;②的最小值是5,-3≤x≤2【解析】【分析】(1)①当x=-1时,计算;②计算,求得x即可;(2)①或,解方程即可;②表示动点x到2和-3的距离和,按照x>2,x<-3,-3≤x≤2分别计算比较结果即可.(1)(1)①∵,∴当x=-1时, =-5,∴的值是-5,故答案为:-5;②∵,∴=7,∴x=5,故答案为:5;(2)①有,x=,理由如下:∵,,且,∴,无解;或,解得x=,故当x=时,;②设动点P表示的数为x,点A表示的数是-3,点B表示的数2,则表示数轴上动点P到点A和点B的距离和即PA+PB, 当x>2时,如图所示,PA+PB>AB=2-(-3)=5;当x<-3时,如图所示,PA+PB>AB=2-(-3)=5;当-3≤x≤2时,如图所示,,PA+PB=x+3+2-x=5=AB=2-(-3)=5;故当-3≤x≤2时,有最小值,且为5.【点睛】本题考查了求函数值,自变量的值,解方程,绝对值的化简,数轴上的动点问题,熟练掌握绝对值的化简,数轴上的动点问题是解题的关键.5、 (1)300千米,1小时(2)(3)或【解析】【分析】(1)根据图象,即可求解;(2)根据图象,可得乙车在点追上甲车,再求出两车的速度,然后设甲车出发小时后,乙车追上甲车,可得,解出即可求解;(3)分两种情况讨论,即可求解.(1)解:由图象可得,,两城相距300千米,乙车比甲车早到(小时);(2)解:由图象可得,乙车在点追上甲车,甲车的速度为(千米/时),乙车的速度为(千米/时),设甲车出发小时后,乙车追上甲车,,解得,∴(千米),∴点;(3)解:根据题意得:当乙车没有追上甲车前,甲、乙两车相距40千米时,,解得: ;当乙车超过甲车后,甲、乙两车相距40千米时,,解得:;综上所述,当甲、乙两车相距40千米时,或.【点睛】本题主要考查了函数图象,从函数图象获取准确信息,并利用数形结合思想解答是解题的关键.
相关试卷
这是一份初中冀教版第二十章 函数综合与测试一课一练,共20页。试卷主要包含了变量,有如下关系,函数的自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试随堂练习题,共24页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试综合训练题,共26页。试卷主要包含了小明家等内容,欢迎下载使用。