![2021-2022学年度冀教版八年级数学下册第二十章函数专项测评练习题第1页](http://img-preview.51jiaoxi.com/2/3/12765497/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十章函数专项测评练习题第2页](http://img-preview.51jiaoxi.com/2/3/12765497/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十章函数专项测评练习题第3页](http://img-preview.51jiaoxi.com/2/3/12765497/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十章 函数综合与测试综合训练题
展开这是一份冀教版八年级下册第二十章 函数综合与测试综合训练题,共24页。试卷主要包含了如图所示的图象等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、根据如图所示的程序计算函数y的值,若输入x的值为4时,输出的y的值为7,则输入x的值为2时,输出的y的值为( )
A.1 B.2 C.4 D.5
2、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )
A. B. C. D.
3、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:
①越野登山比赛的全程为1000米;
②甲比乙晚出发40分钟;
③甲在途中休息了10分钟;
④乙追上甲时,乙跑了750米.其中正确的说法有( )个
A.1 B.2 C.3 D.4
4、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
5、甲、乙两人沿同一条路从A地出发,去往100千米外的B地,甲、乙两人离A地的距离(千米)与时间t(小时)之间的关系如图所示,以下说法正确的是( )
A.甲的速度是40km/h
B.乙的速度是30km/h
C.甲出发小时后两人第一次相遇
D.甲乙同时到达B地
6、一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是( )
A.前3h中汽车的速度越来越快 B.3h后汽车静止不动
C.3h后汽车以相同的速度行驶 D.前3h汽车以相同速度行驶
7、如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在第4小时到6小时的速度是25千米/时;④汽车出发后9小时返回原地.其中正确的说法共有( )
A.1个 B.2个 C.3个 D.4个
8、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
9、如图1,在菱形ABCD中,AB=6,∠BAD=120°,点E是BC边上的一动点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H(a,b)是图象上的最低点,则a+b的值为( )
A. B. C. D.36
10、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、函数y=中,自变量x的取值范围是 ___.
2、如图①,在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止,设点P运动的路程为x,△ABP的面积为y.若y关于x的函数图象如图②所示,则△BCD的面积是______.
3、国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程(米)与出发的时间(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点__________米.
4、函数中,自变量x的取值范围是________.
5、函数y=中自变量x的取值范围是______.
三、解答题(5小题,每小题10分,共计50分)
1、一个容积为240升的水箱,安装有A、B两个注水管,注水过程中A水管始终打开,B水管可随时打开或关闭,两水管的注水速度均为定值,当水箱注满时,两水管自动停止注水.
(1)如图是某次注水过程中水箱中水量y(升)与时间x(分)之间的函数图象.
①在此次注满水箱的过程中,A水管注水 分,B水管注水 分.
②分别求A、B两水管的注水速度.
(2)若仅用12分钟将此空水箱注满,B水管应打开几分钟?
(3)若同时打开A、B两注水管,且每隔2分钟B水管自动关闭1分钟,注满此空水箱需要几分钟?
2、用列表法与解析式法表示n边形的内角和m(单位:度)关于边数n的函数.
3、(1)画出函数的图象.
(2)设是x轴上的一个动点,它与x轴上表示的点的距离为y.求y关于x的函数解析式,并画出这个函数的图象.
4、小华骑电动车从家出发去西安交大,当他骑了一段路时,想起要买一本书,于是原路返回刚经过的新华书店,买到书后继续前往交大,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:
(1)小华家离西安交大的距离是多少?
(2)买到书后,小华从新华书店到西安交大骑车的平均速度是多少?
(3)本次去西安交大途中,小华一共行驶了多少米?
5、图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度随着碗的数量变化而变化的情况如表格所示:
碗的数量(只) | 1 | 2 | 3 | 4 | 5 | … |
高度(cm) | 4 | 5.2 | 6.4 | 7.6 | 8.8 | … |
(1)用h(cm)表示这碗的高度,用x(只)表示这摞碗的数量,请结合表格直接写出h(cm)与x(只)之间的函数关系式.
(2)若这摞碗的高度为11.2cm,求这摞碗的数量.
-参考答案-
一、单选题
1、A
【解析】
【分析】
直接利用已知运算公式公式得出b的值,进而代入求出x=3时对应的值.
【详解】
解:∵输入x的值是4时,输出的y的值为7,
∴7=2×4+b,
解得:b=-1,
若输入x的值是2,则输出的y的值是:y=-1×2+3=1.
故选:A.
【点睛】
此题主要考查了函数值,正确得出b的值是解题关键.
2、D
【解析】
【分析】
根据速度,时间与路程的关系得出,变形即可.
【详解】
解:根据速度,时间与路程的关系得
∴.
故选D.
【点睛】
本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.
3、C
【解析】
【分析】
根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.
【详解】
解:由图像可知,从起点到终点的距离为1000米,故①正确;
根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;
在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;
∵乙从起点到终点的时间为10分钟,
∴乙的速度为1000÷10=100米/分钟,
设乙需要t分钟追上甲,
,
解得t=7.5,
∴乙追上甲时,乙跑了7.5×100=750米,故④正确;
故选C.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
4、B
【解析】
【分析】
由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
【详解】
解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
乙车行驶280千米需要的时间为:小时,
所以甲车返回的速度为:千米/时,故②符合题意;
由小时,所以 故③符合题意,
当乙车行驶2小时时,行驶的路程为:千米,
此时甲车行驶1小时,千米,
所以两车相距:千米,
当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
距离A地千米,所以两车相距千米,故④不符合题意;
综上:故选B
【点睛】
本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
5、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由图可得, 甲车出发第小时时距离A地千米,甲车出发第小时时距离A地千米,甲车的速度是千米/小时,故选项A符合题意;
乙车出发小时时距离A地千米,乙车速度是千米/小时,故选项B不合题意;
甲车第小时到达地,甲车的速度是千米/小时,则甲车到达地用时小时,则甲车在第小时出发,由图像可得甲,乙两车在第小时相遇,则甲车出发小时两车相遇,故选项正确;
甲车行驶千米时,乙车行驶了千米,甲车先到B地,故选项D不合题意;
故选:
【点睛】
本题主要考查了函数图象信息分析,解答本题的关键是明确题意,利用数形结合的思想解答.
6、B
【解析】
【分析】
根据图象可直接进行排除选项.
【详解】
解:由图象可知前3小时汽车行驶的路程是曲线,并且路程是缓慢增加,故汽车的速度是越来越小,
在3小时到5小时之间,汽车的路程没有发生改变,故可知汽车在此期间是静止不动的,
由上述可知,只有B选项正确;
故选B.
【点睛】
本题主要考查函数图象,解题的关键是根据函数图象得到相关信息.
7、C
【解析】
【分析】
根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.
【详解】
解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错误;
从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,故②正确;
汽车在第4小时到6小时的速度是=千米/时,故③正确;
由图象可知,当t=9时,s=0,汽车出发后9小时返回原地,故④正确.
∴正确的说法有:②③④,共有3个.
故选:C.
【点睛】
此题考查了函数图像问题,解题的关键是正确分析题目中信息进行求解.
8、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
9、A
【解析】
【分析】
从图2知,是的最小值,从图1作辅助线知;接下来求出,设与交于点,则求出,,最后得,所以,选.
【详解】
解:如下图,在边上取点,使得和关于对称,
连接,得,
连接,作,垂足为,
由三角形三边关系和垂线段最短知,
,
即有最小值,
菱形中,,,
在△中,,
解得,
是图象上的最低点
,
此时令与交于点,
由于,在△中,
,又,
,
又的长度为,图2中是图象上的最低点,
,
又,
,
故选:A.
【点睛】
本题考查动点及最小值问题,解题的关键是在于通过翻折点轴对称),然后利用三角形三边关系及垂线段最短原理,判断出最小值为.
10、D
【解析】
【分析】
利用x=-1时,求函数值进行一一检验是否为1即可
【详解】
解: 当x=-1时,,图象不过点,选项A不合题意;
当x=-1时,,图象不过点,选项B不合题意;
当x=-1时,,图象不过点,选项C不合题意;
当x=-1时,,图象过点,选项D合题意;
故选择:D.
【点睛】
本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.
二、填空题
1、x≠1.
【解析】
【分析】
根据分母不能为0,可得x−1≠0,即可解答.
【详解】
解:根据题意得:x−1≠0,
解得:x≠1.
故答案是:x≠1.
【点睛】
本题考查了函数自变量的取值范围,解决本题的关键是明确分母不能为0.
2、3
【解析】
【分析】
由图2可知,当到P与C重合时最大,△ABP的面积最大,此时可求得BC=2;然后可知当P在CD上移动时面积不变,可知CD=5-2=3,因此可求△BCD的面积.
【详解】
解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;
在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.
故答案为:3.
【点睛】
本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键.
3、204.
【解析】
【分析】
设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,利用70秒相距70米,得出v1=v2+1,利用小一500秒到终点,求出v2,,再求出小一到终点时,小艾距终点的路程,利用两者相向而行510米所用时间即可
【详解】
解:∵70秒时,两人相距70米,然后小艾休息,小一追上,说明小艾速度快,
设小艾骑自行车速度为v1米/秒,小一骑自行车速度为v2米/秒,
∴70v1-70v2=70,
∴v1=v2+1,
小一欢骑自行车到乐谷,用500秒,小一的速度为2000÷500=4米/秒,
∴小艾的速度为5米/秒,
小艾在路旁休息了4分钟后再次出发,以1.2×5=6米/秒的速度冲向终点,
2000-70×5-[500-(70+4×60)]×6=2000-350-1140=510米,
当小一到终点时,小艾距终点510米,小一返回与小艾相遇时间为:510÷(4+6)=51秒,
此时距终点51×4=204米.
故答案为204.
【点睛】
本题考查利用函数图像获取信息,掌握图像的这点含义是解题关键.
4、x≥0
【解析】
【分析】
根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.
【详解】
∵有意义,
∴x≥0.
故答案为:x≥0
【点睛】
本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.
5、x1且x-3
【解析】
【分析】
根据分母不为0,被开方数大于等于0,进行计算即可.
【详解】
解:由题意得:1-x0,且x+30,
∴x1且x-3,
三、解答题
1、(1)①16,8;②6升/分,18升/分;(2);(3)13
【解析】
【分析】
(1)①观察函数图像可知,在0-8分钟内,只有A水管打开,8-16分钟内,A水管和B水管同时打开,由此进行求解即可;
②先根据根据函数图像可知在0-8分钟内,只有A水管注水,一共注水48升,求出A水管的注水速度,然后求出16分钟内A水管一共注水=6×16=96升,从而得到B水管在8-16分钟内注水=240-96=144升,由此即可求出B水管的注水速度;
(2)设B水管应该打开x分钟,然后根据题意列出方程求解即可;
(3)先求出打开A水管3分钟和B水管2分钟的注水量为升,由,则可以得出需要循环上述过程四次需用12分钟,然后求出剩余需要的时间即可得到答案.
【详解】
解:(1)①观察函数图像可知,在0-8分钟内,只有A水管打开,8-16分钟内,A水管和B水管同时打开,
∴A水管注水16分钟,B水管注水8分钟,
故答案为:16;8;
②根据函数图像可知在0-8分钟内,只有A水管注水,一共注水48升,
∴A水管的注水速度=48÷8=6升/分;
∴16分钟内A水管一共注水=6×16=96升,
∴B水管在8-16分钟内注水=240-96=144升,
∴B水管的注水速度=144÷8=18升/分
(2)设B水管应该打开x分钟,
则由题意得:,
解得,
∴B水管应该打开分钟,
答:B水管应该打开分钟;
(3)打开A水管3分钟和B水管2分钟的注水量为升,
∵,
∴注满水箱可以打开A水管3分钟和B水管2分钟循环四次,
∴循环四次花费的时间分,
∴循环四次后还要注水的量为24升,
∵分,
∴还需要注水的时间为1分,
∴一共需要注水的时间=12+1=13分,
答:注满此空水箱需要13分钟.
【点睛】
本题主要考查了从函数图像获取信息进行求解,解题的关键在于能够准确读懂函数图像.
2、列表法见解析,且n为整数
【解析】
【分析】
从一点和边上的其他点连接分成三角形的个数为点数减去2,也就是边数减2,由于三角形的内角和是180°,所以多边形内角和与它的边数关系为多边形内角和=(边数﹣2)×180°,由此规律计算即可求解.
【详解】
解:
图 例 | … | n边形 | |||
边 数n | 3 | 4 | 5 | … | n |
内角和m/度 | 180=180×(3﹣2) | 360=180×(4﹣2) | 540=180×(5﹣2) | … | 180×(n﹣2) |
故n边形的内角和m(单位:度)关于边数n的函数为m=180°(n﹣2),(n≥3且n为整数).
【点睛】
本题考查了函数的表达形式,函数的表达形式有列表法、图像法以及解析式法,熟练掌握多边形内角和的推导过程是解决本题的关键.
3、(1)见解析;(2),见解析
【解析】
【分析】
(1)先列表,然后画出函数图像即可;
(2)先根据题意求出函数解析式,然后列表,最后画出函数图像即可
【详解】
解:(1)由题意得:y=|x-1|,即y;
x | 1 | 2 |
y=x-1 | 0 | 1 |
x | 0 | 1 |
y=-x+1 | 1 | 0 |
函数图象如图:
(2)由题意得:y=|x-(-3)|=|x+3|,即y;
x | -3 | -2 |
y=x+3 | 0 | 1 |
x | -4 | -3 |
y=-x-3 | 1 | 0 |
函数图象如图:
【点睛】
本题主要考查函数及其图像,掌握函数图象的画法是解题的关键.
4、(1)4800米;(2)450米/分;(3)6800米
【解析】
【分析】
(1)根据函数图象,直接可得小华家到西安交大的路程;
(2)根据函数图象求得从新华书店到西安交大的路程和时间,根据速度等于路程除以时间即可求得;
(3)根据函数图象可得路程为3段,将其相加即可.
【详解】
解:(1)根据函数图象,可知小华家到西安交大的路程是4800米;
(2)小华从新华书店到西安交大的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,
小华从新华书店到西安交大骑车的平均速度是1800÷4=450米/分;
(3)根据函数图象,小华一共行驶了4800+2×(4000﹣3000)=6800(米).
【点睛】
本题考查了函数图象,要理解横纵坐标表示的含义以及小华的运动过程,从函数图象中获取信息是解题的关键.
5、(1)h=1.2x+2.8;(2)7
【解析】
【分析】
(1)根据表格中数据变化规律得出答案;
(2)根据函数关系式,当h=11.2cm时,求出相应的x的值即可.
【详解】
解:(1)由表格中两个变量的变化关系可得,
h=4+1.2(x−1)=1.2x+2.8,
答:h=1.2x+2.8;
(2)当h=11.2cm时,即1.2x+2.8=11.2,
解得x=7,
答:当这摞碗的高度为11.2cm,碗的数量为7只.
【点睛】
本题考查常量与变量,函数的表示方法,理解变量与常量的意义,根据表格中两个变量的变化规律得出函数关系式是得出答案的关键.
相关试卷
这是一份数学第二十章 函数综合与测试综合训练题,共22页。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共21页。
这是一份2021学年第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了在函数中,自变量的取值范围是,函数的图象如下图所示等内容,欢迎下载使用。