2021学年第二十章 函数综合与测试课时作业
展开
这是一份2021学年第二十章 函数综合与测试课时作业,共20页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关系中,一定能称是x的函数的是( )A.y2=4x B.|y|=x-2 C.y=|x|-3 D.y4=64x2、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个3、在函数中,自变量x的取值范围是( )A.x≥﹣1 B.x≠3 C.x>﹣1 D.x≥﹣1且x≠34、下列曲线中,表示y是x的函数的是( )A. B.C. D.5、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D→A作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是( )A. B.C. D.6、函数中,自变量x的取值范围是( )A. B.且 C. D.且7、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )A. B.C. D.8、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )A.该游泳池内开始注水时已经蓄水100m3B.每小时可注水190m3C.注水2小时,游泳池的蓄水量为380m3D.注水2小时,还需注水100m3,可将游泳池注满9、下列各自线中表示y是x的函数的是( )A. B.C.D.10、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为(千米),速度为(千米/分),时间为(分)下列函数图象能表达这一过程的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、描点法画函数图象的一般步骤:第一步:______.在自变量取值范围内选定一些值.通过函数关系式求出对应函数值列成表格.第二步:______.在直角坐标系中,以自变量的值为横坐标,相应函数值为纵坐标,描出表中对应各点.第三步:______.按照坐标由小到大的顺序把所有点用平滑曲线连结起来.2、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)3、汽车以60km/h的速度匀速行驶,行驶路程为 s km,行驶时间为 t h,如表:t/h12345s/km60120180240300可知:路程 =____________(1)在上面这个过程中,变化的量是_______、_________.不变化的量是_____________.(2)试用含t的式子表示s:s=_______.这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.4、甲、乙两车从A地出发,匀速驶向B地.甲车以的速度行驶1小时后,乙车才沿相同路线行驶乙车先到达B地并停留1小时后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离与乙车行驶时间之间的函数关系如图所示下列说法:①乙车的速度是;②;③点H的坐标是;④.其中错误的是_______.(只填序号)5、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿着的方向以2cm/s的速度匀速运动到终点.图2是点运动时,的面积随时间变化的全过程图象,则的长度为______cm.三、解答题(5小题,每小题10分,共计50分)1、实验室甲、乙两人相约一起去距二人所在地的市器材店购买器材.两人都从实验室出发,沿一条笔直的公路匀速前往器材店.乙因有事耽搁就让甲骑摩托车先出发,一段时间后乙开车沿同一路线出发,两人都到达器材店后一起购买器材.设甲行驶的时间为,两人之间的距离为.如图表示两人在前往器材店的路上,与函数关系的部分图像.请你解决以下问题:(1)说明点、点、点的实际意义;(2)求出甲、乙的速度;(3)当__________时,两人之间相距8千米?2、如图是一位病人的体温记录图,看图回答下列问题:(1)自变量是 ,因变量是 ;(2)护士每隔 小时给病人量一次体温;(3)这位病人的最高体温是 摄氏度,最低体温是 摄氏度;(4)他在4月8日12时的体温是 摄氏度;(5)图中的横虚线表示的含义.3、图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度随着碗的数量变化而变化的情况如表格所示:碗的数量(只)12345…高度(cm)45.26.47.68.8…(1)用h(cm)表示这碗的高度,用x(只)表示这摞碗的数量,请结合表格直接写出h(cm)与x(只)之间的函数关系式.(2)若这摞碗的高度为11.2cm,求这摞碗的数量.4、如图是某一天北京与上海的气温随时间变化的图象.(1)这一天内,上海与北京何时气温相同?(2)这一天内,上海在哪段时间比北京气温高?在哪段时间比北京气温低?5、用描点法画出函数y=x+2的图象. -参考答案-一、单选题1、C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数.【详解】解:根据函数概念可得:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应可得C中y是x的函数,故选:C.【点睛】此题主要考查了函数的概念,关键是掌握函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.3、D【解析】【分析】根据分式的分母不为零,二次根式被开方数非负即可得到不等式组,解不等式组即可.【详解】由题意得: 解得:且 故选:D【点睛】本题考查了函数有意义的自变量的取值范围,一般地:若解析式中有分式,则分母不为零,若有二次根式,则被开方数非负,其余情况下自变量取值无限制,实际问题要具体情况具体分析.4、C【解析】【分析】根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;B、对于的每一个取值,可能有两个值与之对应,不符合题意;C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;D、对于的每一个取值,可能有两个值与之对应,不符合题意;故选:【点睛】本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量.5、B【解析】【分析】运用动点函数进行分段分析,当P在BC上,P在CD上以及P在AD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【详解】解:点P从点B到点C,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×BP=×2x=x;因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以S与点P运动的路程x之间的函数关系是:S=1(1≤x≤3);点P从点D到点A,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×AP=×2×(4﹣x)=﹣x+4.所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:故选:B.【点睛】本题主要考查了动点问题的函数图像,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点到点以及从点到点,△ABP的面积S与点P运动的路程x之间的函数关系.6、B【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x-2≥0且x−3≠0,解得且.故选:B.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7、D【解析】【分析】根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当时,,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.8、B【解析】【分析】根据图象中的数据逐项判断即可解答.【详解】解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,故选:B.【点睛】本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.9、C【解析】【分析】根据函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)逐项判断即可得.【详解】解:A、一个的值对应两个或三个的值,则此项不符题意;B、一个的值对应一个或两个的值,则此项不符题意;C、任意一个都有唯一确定的一个和它对应,则此项符合题意;D、一个的值对应一个或两个的值,则此项不符题意;故选:C.【点睛】本题考查了函数,掌握理解函数的概念是解题关键.10、C【解析】【分析】因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.【详解】解:∵400×5=2000(米)=2(千米),∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米,而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A与B;又∵回到原出发地”表示终点的纵坐标为0,∴排除选项D,故选:C.【点睛】本题考查了函数的图象,解题的关键是理解函数图象的意义.二、填空题1、 列表 描点 连线【解析】略2、220≤P≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.【详解】解:三者关系式为:P·R=U²,可得,把电阻的最小值R=110代入得,得到输出功率的最大值,把电阻的最大值R=220代入得,得到输处功率的最小值,即用电器输出功率P的取值范围是220≤P≤440.故答案为:220≤P≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.3、 速度×时间 时间t 路程s 速度60km/h 60 t s t【解析】略4、④【解析】【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2-6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故答案为:④.【点睛】本题考查函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.5、2【解析】【分析】点P在点D时,设正方形的边长为a,a×a=18,解得a=6;当点P在点C时,×EP×6=12,解得EP=4,即EC=4,进而即可求解.【详解】解:当点P在点D时,由图象可知三角形APE的面积为18,设正方形的边长为a,y=AB×AD=a×a=18,解得a=6;当点P在点C时,由图象可知三角形APE的面积为12,y=EP×AB=×EP×6=12,解得EP=4,即EC=4,∴BE=6-4=2,故答案是:2.【点睛】本题考查的是动点函数图象问题,此类问题关键是弄清楚不同时间段,图象和图形的对应关系.三、解答题1、 (1)点所表示的含义为:甲先走20分钟,此时甲乙相距10千米,表示的含义为:乙行驶30分钟追上了甲,此时甲乙两人相遇,表示的含义为:乙行驶70分钟,此时两人相距千米.(2)甲的速度为每分钟千米,乙的速度为每分钟千米.(3)当分钟或分钟或分钟或分钟时,两人相距8千米.2、(1)时间,体温;(2)6;(3)39.5,36.8;(4)37.5;(5)人的正常体温【解析】【分析】(1)根据折线统计图的特点解答即可;(2)根据横轴的特点即可求解;(3)根据折线统计图的特点即可求解;(4)根据折线统计图的特点即可求解;(5)根据折线统计图的特点即可求解.【详解】解:(1)自变量是时间,因变量是体温;(2)护士每隔6小时给病人量一次体温;(3)这位病人的最高体温是39.5摄氏度,最低体温是36.8摄氏度;(4)他在4月8日12时的体温是37.5摄氏度;(5)图中的横虚线表示人的正常体温;故答案为:时间;体温;6;39.5;36.8;37.5.【点睛】此题主要考查了常量和变量以及折线统计图,关键是正确从统计图中获取信息.3、(1)h=1.2x+2.8;(2)7【解析】【分析】(1)根据表格中数据变化规律得出答案;(2)根据函数关系式,当h=11.2cm时,求出相应的x的值即可.【详解】解:(1)由表格中两个变量的变化关系可得,h=4+1.2(x−1)=1.2x+2.8,答:h=1.2x+2.8;(2)当h=11.2cm时,即1.2x+2.8=11.2,解得x=7,答:当这摞碗的高度为11.2cm,碗的数量为7只.【点睛】本题考查常量与变量,函数的表示方法,理解变量与常量的意义,根据表格中两个变量的变化规律得出函数关系式是得出答案的关键.4、(1)7时,12时;(2)0~7时,12~24时上海气温高,7~12时上海气温低【解析】【分析】(1)根据题意,上海与北京气温相同就是函数图象中重合的部分,就可得出答案;(2)上海比北京气温高就是上海的图象在北京图象的上方,根据图象,就可得出答案;上海比北京气温低就是上海的图象在北京图象的下方,根据图象,就可得出答案.【详解】解:(1) 根据图象,可得到上海和北京在7时和12时,图象重合,故这一天内,上海与北京7时和12时气温相同.(2)根据图象,上海的图象在北京图象的上方的时间段为:0时至7时和12时至24时,故0时到7时和12时到24时,上海的气温比北京的高;根据图象,可得到7时至12时,上海的图象在北京的下方,故7时至12时,上海的气温比北京低.【点睛】本题考查函数图象,做题的关键是从函数图象中得到有效信息,分析解答即可.5、见解析【解析】【详解】解:列表、描点、连线后得到的图象,如图所示.
相关试卷
这是一份数学冀教版第二十章 函数综合与测试当堂检测题,共22页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中冀教版第二十章 函数综合与测试同步测试题,共21页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
这是一份初中数学第二十章 函数综合与测试精练,共24页。试卷主要包含了如图,点A的坐标为,当时,函数的值是,函数的自变量x的取值范围是等内容,欢迎下载使用。