初中数学第二十章 函数综合与测试精练
展开
这是一份初中数学第二十章 函数综合与测试精练,共24页。试卷主要包含了如图,点A的坐标为,当时,函数的值是,函数的自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图象中,能表示y是x的函数的是( )A. B.C. D.2、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④3、在函数中,自变量的取值范围是( )A. B. C. D.4、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是( )A. B.C. D.5、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )A. B.C. D.6、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个7、当时,函数的值是( )A. B. C.2 D.18、如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是( )A. B.C. D.9、函数的自变量x的取值范围是( )A.x>5 B.x<5 C.x≠5 D.x≥-510、在函数y=中,自变量x的取值范围是 ( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数的自变量x的取值范围是_______的实数.2、函数y=的定义域为 ___.3、如图1,在△ABC中,AB>AC,D是边BC上的动点.设B,D两点之间的距离为x,A,D两点之间的距离为y, 表示 y与x的函数关系的图象如图2所示.线段AC的长为_________________,线段AB的长为____________.4、甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有____________.(写出所有正确结论的序号)5、汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是_____,其中的常量是_____,变量是_____.三、解答题(5小题,每小题10分,共计50分)1、如图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家,其中表示时间,表示小明离他家的距离,根据图象回答问题:(1)菜地离小明家 km;(2)小明走到菜地用了 min;(3)小明给菜地浇水用了 min;(4)小明从菜地到玉米地走了 km;(5)小明从玉米地走回家平均速度是 km/min.2、如图,在等边△ABC中,BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为xcm,CE为ycm.小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm00.511.522.533.544.55y/cm5.03.32.01.10.4 0.30.40.30.20补全表格上相关数值.(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为 cm.3、某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.(1)当月用电量不超过200时,y与x的函数关系式为 ,当月用电量超过200度时,y与x的函数关系式为 .(2)小新家十月份用电量为160度,求本月应交电费多少元?(3)小明家十月份交纳电费117元,求本月用电多少度?4、植物呼吸作用受温度影响很大,观察如图,回答问题:(1)此图反映的自变量和因变量分别是什么?(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?(3)要使豌豆呼吸作用最强,应控制在什么温度左右?5、如图,中,,,是中点,是线段上一动点,连接,设,两点间的距离为,,两点间的距离为.(当点与点重合时,的值为小东根据学习一次函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程:(1)通过取点、画图、测量,得到了与的几组值,如下表,请补充完整(说明:相关数值保留一位小数);01.02.03.04.05.06.07.08.06.35.4 3.7 2.52.42.73.3(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①当取最小值时,的值约为 .(结果保留一位小数)②当是等腰三角形时,的长度约为 .(结果保留一位小数) -参考答案-一、单选题1、A【解析】【分析】根据“在一个变化过程中,如果有两个变量x、y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数”,由此可排除选项.【详解】解:选项A符合函数的概念,而B、C、D都不符合“对于x的每一个确定的值,y都有唯一确定的值与其对应”,故选A.【点睛】本题主要考查函数的定义,熟练掌握函数的定义是解题的关键.2、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.3、C【解析】【分析】由二次根式有意义的条件,可得 解不等式即可得到答案.【详解】解:∵函数中,则∴;故选:C.【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.4、A【解析】【分析】先作出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中, ∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.5、D【解析】【分析】根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.【详解】解:过点A作AD′⊥BC于点D′,如图,由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可知,D选项是正确的;故选:D.【点睛】本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.6、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.7、D【解析】【分析】把代入计算即可.【详解】解:把代入,得,故选D.【点睛】本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.8、B【解析】【分析】根据动点P的正方形各边上的运动状态分类讨论△APD的面积即可;【详解】由点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0;当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8;当8≤x≤12时,点P在CB上运动,△APD的面积y=8;当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32;故选B.【点睛】本题主要考查了正方形的性质,动点问题与函数图象结合,准确分析计算是解题的关键.9、D【解析】【分析】根据二次根式有意义的条件即可得出答案.【详解】解:∵函数,∴,解得:,故选:D.【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.10、D【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:∵x-3≥0,∴x≥3,∵x-4≠0,∴x≠4,综上,x≥3且x≠4,故选:D.【点睛】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.二、填空题1、【解析】【分析】根据分式有意义的条件,二次根式有意义的条件,列出不等式,进而可得自变量x的取值范围.【详解】依题意解得【点睛】本题考查了函数的定义,分式有意义的条件,二次根式有意义的条件,掌握以上知识是解题的关键.2、x>2【解析】【分析】根据二次根式中被开方数非负,同时注意分母不为零,即可求得函数的定义域.【详解】由题意得:且x-2≠0解得:x>2故答案为:x>2【点睛】本题考查了求函数的自变量的取值范围,即函数的定义域.一般考虑下列情形:函数解析式有分母时,分母不为零;含有二次根式时,要求被开方数非负.3、 【解析】【分析】从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,进而求解.【详解】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,,则,在Rt△ABH中,,故答案为:,.【点睛】本题考查的是动点问题的函数图象,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.4、①②③④【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲步行的速度为:180÷3=60米/分,故①正确,乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,乙追上甲用的时间为:12−3=9(分钟),故③正确,乙到达终点时,甲离终点距离是:1800−(3+22.5)×60=270米,故④正确,故答案为:①②③④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5、 Q=40-5t 40,5 Q,t【解析】略三、解答题1、 (1)1.1(2)15(3)10(4)0.9(5)0.08【解析】【分析】结合已知、图象逐一进行分析即可解题.(1)解:由图象可知:菜地离小明家1.1千米故答案为:1.1;(2)由图象可知:小明从家到菜地用了15分钟故答案为:15;(3)由图象可知:小明给菜地浇水用了(分钟)故答案为:10;(4)由图象可知:小明从菜地到玉米地走了(千米)故答案为:0.9;(5)由图象可知:玉米地离小明家2千米,小明从玉米地走回家的平均速度为:.2、(1)0;(2)见详解;(3)1.7【解析】【分析】(1)由题意认真按题目要求测量BD、CE,进行填表即可;(2)根据题意按照表格描点作图即可;(3)由题意线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.【详解】解:(1)根据题意测量约0,故答案为:0;(2)根据题意画图:(3)当线段BD是线段CE长的2倍时,得到y=x图象,该图象与(2)中图象的交点即为所求情况,测量得BD长约1.7cm.故答案为:1.7.【点睛】本题考查函数作图和学生函数图象实际意义的理解,同时考查学生由数量关系得到函数关系的转化思想.3、(1),;(2)88;(3)【解析】【分析】(1)时,电费就是0.55乘以相应度数;时,电费超过200的度数;(2)把160代入得到的函数求解即可;(3)把117代入得到的函数求解即可.【详解】解:(1)当时,与的函数解析式是;当时,与的函数解析式是,即;故答案为:,(2)(元)答:小明家4月份应交电费145元.(3)因为小明家5月份的电费超过110元,所以把代入中,得.答:小明家5月份用电210度.【点睛】本题考查一次函数的应用,正确的列出函数关系是解题的关键.4、(1)此图反映的自变量和因变量分别是温度和呼吸作用强度;(2)温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右)【解析】【分析】(1)根据函数图象即可得到结论;(2)根据图象中提供的信息即可得到结论;(3)根据图象中提供的信息即可得到结论.【详解】解:(1)此图反映的自变量是温度,因变量是呼吸作用强度;(2)由图象知,温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右).【点睛】本题考查了常量和变量,函数图象,正确的识别图象是解题的关键.5、故答案为:0.0【点睛】本题考查函数图象的应用,是基础考点,掌握相关知识是解题关键.8.(1)4.5,3.0;(2)见解析;(3)①5.8;②3.3或6.3【解析】【分析】(1)利用测量方法得到答案;(2)利用描点法作图;(3)①通过测量解答;②根据等腰三角形的定义画出图象,并测量x及y的值,由此得到答案.(1)解:通过取点、画图、测量可得时,,时,,故答案为:4.5,3.0;(2)解:利用描点法,图象如图所示.(3)①由函数图象得,当取最小值时,的值约为;②当是等腰三角形时,有两种情况,如图:时,,,由函数图象得,时,,当是等腰三角形时,的长度约为3.3或.故答案为:①5.8;②3.3或6.3.【点睛】本题考查函数综合题、描点法画函数图象等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考常考题型.
相关试卷
这是一份数学冀教版第二十章 函数综合与测试当堂检测题,共22页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试达标测试,共23页。试卷主要包含了在下列图象中,是的函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试随堂练习题,共20页。试卷主要包含了在下列图象中,是的函数的是,函数中,自变量x的取值范围是等内容,欢迎下载使用。