![难点详解冀教版八年级数学下册第二十章函数月考练习题(精选含解析)01](http://img-preview.51jiaoxi.com/2/3/12765175/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十章函数月考练习题(精选含解析)02](http://img-preview.51jiaoxi.com/2/3/12765175/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十章函数月考练习题(精选含解析)03](http://img-preview.51jiaoxi.com/2/3/12765175/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十章 函数综合与测试同步达标检测题
展开冀教版八年级数学下册第二十章函数月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )
A., B.,
C., D.,
2、当时,函数的值是( )
A. B. C.2 D.1
3、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是( )
A.1 B.2 C.3 D.4
5、下列曲线中,表示y是x的函数的是( )
A. B.
C. D.
6、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为( )
A.800元 B.600元 C.1200元 D.1000元
7、下列函数中,自变量的取值范围选取错误的是( )
A.y=2x2中,x取全体实数 B.y=中,x取x≠-1的实数
C.y=中,x取x≥2的实数 D.y=中,x取x≥-3的实数
8、如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).
A.线段EF B.线段DE C.线段CE D.线段BE
9、下列关于变量x,y的关系,其中y不是x的函数的是( )
A. B.
C. D.
10、下列曲线中,表示y是x的函数的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.
2、函数中,自变量x的取值范围是______.
3、已知三角形底边长为4,高为,三角形的面积为,则与的函数关系式为______.
4、用函数观点解决实际问题:
(1)搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;
(2)分清______和______,并注意自变量的______.
5、下表为研究弹簧长度与所挂物体质量关系的实验表格:
所挂物体重量x(kg) | 1 | 2 | 3 | 4 | 5 |
弹簧长度y(cm) | 10 | 12 | 14 | 16 | 18 |
则弹簧长度y与所挂物体重量x的之间的关系式为________________,当所挂物体质量为3.5kg时,弹簧长度为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,,,是中点,是线段上一动点,连接,设,两点间的距离为,,两点间的距离为.(当点与点重合时,的值为
小东根据学习一次函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程:
(1)通过取点、画图、测量,得到了与的几组值,如下表,请补充完整(说明:相关数值保留一位小数);
0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | |
6.3 | 5.4 |
| 3.7 |
| 2.5 | 2.4 | 2.7 | 3.3 |
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①当取最小值时,的值约为 .(结果保留一位小数)
②当是等腰三角形时,的长度约为 .(结果保留一位小数)
2、梯形的上底长,高,下底长大于上底长但不超过.写出梯形面积S关于x的函数解析式及自变量x的取值范围.
3、长方形的一边长是,其邻边长为,周长是,面积为.
(1)写出和之间的关系式
(2)写出和之间的关系式
(3)当时,等于多少等于多少
(4)当增加时,增加多少增加多少
4、图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度随着碗的数量变化而变化的情况如表格所示:
碗的数量(只) | 1 | 2 | 3 | 4 | 5 | … |
高度(cm) | 4 | 5.2 | 6.4 | 7.6 | 8.8 | … |
(1)用h(cm)表示这碗的高度,用x(只)表示这摞碗的数量,请结合表格直接写出h(cm)与x(只)之间的函数关系式.
(2)若这摞碗的高度为11.2cm,求这摞碗的数量.
5、为了提高天然气使用效率,保障居民的用气需求,某市推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3 元/m3,
(1)根据题意,填写表:
一户居民的年用气量 | 150 | 250 | 350 | … |
付款金额/元 |
| 625 |
| … |
(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式,并写出自变量的取值范围;
(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
【详解】
解:由图象可知,当x>0时,y<0,
∵,
∴ax<0,a<0;
x=b时,函数值不存在,
即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
∴b>0.
故选:B.
【点睛】
本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
2、D
【解析】
【分析】
把代入计算即可.
【详解】
解:把代入,得
,
故选D.
【点睛】
本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.
3、B
【解析】
【分析】
由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
【详解】
解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
乙车行驶280千米需要的时间为:小时,
所以甲车返回的速度为:千米/时,故②符合题意;
由小时,所以 故③符合题意,
当乙车行驶2小时时,行驶的路程为:千米,
此时甲车行驶1小时,千米,
所以两车相距:千米,
当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
距离A地千米,所以两车相距千米,故④不符合题意;
综上:故选B
【点睛】
本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
4、B
【解析】
【分析】
根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.
【详解】
解:由题意和图象可知, A、B港口相距400km,故①正确;
∵甲船的速度是乙船的1.25倍,
∴乙船的速度为:100÷1.25=80(km/h),
∵乙船的速度为80km/h,
∴400÷80=(400+)÷100-1,
解得:=200km, 故②错误;
∵甲船4个小时行驶了400km,
∴甲船的速度为:400÷4=100(km/h), 故③正确;
乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km), 故④错误.
故选B
【点睛】
本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
5、C
【解析】
【分析】
根据函数的定义进行判断即可.
【详解】
解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,
故选:C.
【点睛】
本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.
6、D
【解析】
【分析】
将代入函数关系式即可得.
【详解】
解:将代入得:,
即获利为1000元,
故选:D.
【点睛】
本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.
7、D
【解析】
【分析】
根据分式的分母不能为0、二次根式的被开方数的非负性即可得.
【详解】
解:A、中,取全体实数,此项正确;
B、,即,
中,取的实数,此项正确;
C、,
,
中,取的实数,此项正确;
D、,且,
,
中,取的实数,此项错误;
故选:D.
【点睛】
本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.
8、B
【解析】
【分析】
根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.
【详解】
解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;
B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;
C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;
D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;
故选B.
【点睛】
本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
9、D
【解析】
【详解】
解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
10、C
【解析】
【分析】
根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.
【详解】
解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;
B、对于的每一个取值,可能有两个值与之对应,不符合题意;
C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;
D、对于的每一个取值,可能有两个值与之对应,不符合题意;
故选:
【点睛】
本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量.
二、填空题
1、1760
【解析】
【分析】
根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.
【详解】
解:小明离家2分钟走了160米,
∴小明初始速度为160÷2=80米/分;
小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;
小明在家换衣服3分钟时间,妈妈走了40×3=120米,
设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,
则有160t=1200+120+40t,
∴t=11,
∴小明离家距离为11×160=1760米.
故答案为:1760米.
【点睛】
本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.
2、
【解析】
【分析】
函数表达式是分式时,考虑分式的分母不能为0,可得答案;
【详解】
由题意得:
解得
故答案为.
【点睛】
本题考查了函数值变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
3、
【解析】
【分析】
根据三角形面积公式可得结果.
【详解】
解:由题意,
故答案为:.
【点睛】
本题考查了三角形的面积公式,根据题意,找到所求量的等量关系是解决问题的关键.
4、 自变量 函数 取值范围
【解析】
略
5、 y=2x+8 15cm
【解析】
【分析】
设y=kx+b,取表格两组数据代入解出k、b,即可求得y与x的关系式,再将x=3.5代入求解即可.
【详解】
解:由题意,设弹簧长度y与所挂物体重量x的之间的关系式为y=kx+b,
将x=1,y=10和x=2,y=12代入y=kx+b中,
得:,解得:,
∴弹簧长度y与所挂物体重量x的之间的关系式为y=2x+8,
当x=3.5时,y=2×3.5+8=15,
故答案为:y=2x+8,15cm.
【点睛】
本题考查待定系数法求函数关系式、解二元一次方程组,熟练掌握待定系数法求函数表达式的方法步骤是解答的关键.
三、解答题
1、故答案为:0.0
【点睛】
本题考查函数图象的应用,是基础考点,掌握相关知识是解题关键.
8.(1)4.5,3.0;
(2)见解析;
(3)①5.8;②3.3或6.3
【解析】
【分析】
(1)利用测量方法得到答案;
(2)利用描点法作图;
(3)①通过测量解答;
②根据等腰三角形的定义画出图象,并测量x及y的值,由此得到答案.
(1)
解:通过取点、画图、测量可得时,,时,,
故答案为:4.5,3.0;
(2)
解:利用描点法,图象如图所示.
(3)
①由函数图象得,当取最小值时,的值约为;
②当是等腰三角形时,有两种情况,如图:
时,,
,
由函数图象得,时,,
当是等腰三角形时,的长度约为3.3或.
故答案为:①5.8;②3.3或6.3.
【点睛】
本题考查函数综合题、描点法画函数图象等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考常考题型.
2、
【解析】
【分析】
根据梯形的面积公式求解即可.
【详解】
解:∵梯形面积=(上底+下底)×高,
∴,
整理得:,,
∴解析式为:,.
【点睛】
本题考查列函数表达式,理解函数的定义,掌握基本公式是解题关键.
3、(1);(2);(3),;(4)当增加时,增加,增加
【解析】
【分析】
(1)根据长方形周长公式进行求解即可;
(2)根据长方形面积公式进行求解即可;
(3)根据(2)求得的结果把代入先求出x的值,即可求值y的值;
(4)把代入(1)(2)中求得的y以及S关于x的表达式中求出变化后的周长和面积,由此求解即可.
【详解】
解:(1)由长方形的周长公式,得.
(2)由长方形的面积公式,得.
(3)∵,时,
∴,
∴.
(4)当增加时,,,
∵,
∴增加,增加.
【点睛】
本题主要考查了列代数式,整式的加减计算,代数式求值,解一元一次方程,解题的关键在于能够根据题意列出关于周长和面积的代数式.
4、(1)h=1.2x+2.8;(2)7
【解析】
【分析】
(1)根据表格中数据变化规律得出答案;
(2)根据函数关系式,当h=11.2cm时,求出相应的x的值即可.
【详解】
解:(1)由表格中两个变量的变化关系可得,
h=4+1.2(x−1)=1.2x+2.8,
答:h=1.2x+2.8;
(2)当h=11.2cm时,即1.2x+2.8=11.2,
解得x=7,
答:当这摞碗的高度为11.2cm,碗的数量为7只.
【点睛】
本题考查常量与变量,函数的表示方法,理解变量与常量的意义,根据表格中两个变量的变化规律得出函数关系式是得出答案的关键.
5、(1)375,900;(2)y=;(3)340m3.
【解析】
【分析】
(1)根据两种收费标准进行求解即可;
(2)分两种情况:①当x≤300时,②当x>300时,根据题目所给收费标准求解即可;
(3)先根据,得到,然后把y=870代入y=3x-150中进行求解即可.
【详解】
解:(1)由题意得:当一户居民的年用气量为的时候,付款金额为元,
当一户居民的年用气量为的时候,付款金额为元,
故答案为:375,900;
(2)分两种情况:
①当x≤300时,y=2.5x;
②当x>300时,y=2.5×300+3×(x-300)=3x-150.
综上所述,y关于x的解析式为y=;
(3)∵,
∴
∴将y=870代入y=3x-150,
得870=3x-150,解得x=340.
∴该户居民的年用气量为340m3.
【点睛】
本题主要考查了根据表格求函数关系式,解题的关键在于能够准确读懂题意.
2020-2021学年第二十章 函数综合与测试习题: 这是一份2020-2021学年第二十章 函数综合与测试习题,共22页。
冀教版八年级下册第二十章 函数综合与测试达标测试: 这是一份冀教版八年级下册第二十章 函数综合与测试达标测试,共21页。
初中冀教版第二十章 函数综合与测试课后作业题: 这是一份初中冀教版第二十章 函数综合与测试课后作业题,共22页。试卷主要包含了如图,点A的坐标为等内容,欢迎下载使用。