初中数学冀教版八年级下册第二十章 函数综合与测试达标测试
展开冀教版八年级数学下册第二十章函数定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两人沿同一条路从地出发,去往100千米外的地,甲、乙两人离地的距离(千米)与时间(小时)之间的关系如图所示,以下说法正确的是( )
A.甲的速度是 B.乙的速度是
C.甲乙同时到达地 D.甲出发两小时后两人第一次相遇
2、A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的对应关系如图所示.以下有四个推断:
①月上网时间不足35小时,选择方式A最省钱;
②月上网时间超过55小时且不足80小时,选择方式C最省钱;
③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元;
④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费0.05元.
所有合理推断的序号是( )
A.①② B.①③ C.①③④ D.②③④
3、如图所示各图中反映了变量y是x的函数是( )
A. B.
C. D.
4、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是( )
A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米
C.小南到达景区时共用时7.5小时 D.家距离景区共400千米
5、习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为( )
A.1.1,8 B.0.9,3 C.1.1,12 D.0.9,8
6、在函数中,自变量x的取值范围是( )
A. B. C. D.
7、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是( )
A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x
8、小明家、公园、图书馆依次在一条直线上,周末,小明和妈妈准备去公园放风筝,但是因为小明要先去图书馆还书,所以他们同时从家出发,并约定2小时后在公园碰头.小明先骑自行车匀速前往图书馆,到达图书馆还书后按原路原速返回公园并按照约定时间准时到达公园,妈妈则匀速步行前往公园,结果迟到半小时.如图是他们离家的距离y(km)与小明离家时间x(h)的函数图象,下列说法中错误的是( )
A.小明骑车的速度是20km/h
B.小明还书用了18min
C.妈妈步行的速度为2.4km/h
D.公园距离小明家8km
9、在函数中,自变量x的取值范围是( )
A. B. C. D.
10、下列图象表示y是x的函数的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用函数观点解决实际问题:
(1)搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;
(2)分清______和______,并注意自变量的______.
2、已知函数,当时,_______;当时,_______.
3、李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是_______.
4、若正方形的边长为x,面积为y,则y与x之间的关系式为_______().
5、山西近期遭遇严重洪涝灾害,万余间房屋倒塌.下图是汾河沿线某个村庄的受灾情况和蓝天救援队的排涝现场.某地需排水约,打开排水泵开始排水,排走的水量与排水时间的关系如下表所示.排水分钟后,剩下水量为________.
排水时间/分钟 | … | ||||
剩下的水量/ | … |
三、解答题(5小题,每小题10分,共计50分)
1、已知某函数图象如图所示,请回答下列问题:
(1)自变量的取值范围是
(2)函数值的取值范围是
(3)当为 时,函数值最大;当为 时,函数值最小
(4)当随的增大而增大时,的取值范围是
2、假设圆锥的高是6cm,当圆锥的底面半径由小到大变化时,圆锥的体积随着底面半径而变化,(圆锥的体积公式:V=πr2h,其中r表示底面半径,h表示圆锥的高)
(1)在这个变化过程中,自变量是______________,因变量是_____________.
(2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)与r(cm)的关系式为_________.
(3)当r由1cm变化到10cm时,V由__________cm3变化到__________cm3.
3、指出下列问题中的变量和常量:
(1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为吨,月应交水费为y元.
(2)某地手机通话费为0.2元/.李明在手机话费卡中存入30元,记此后他的手机通话时间为,话费卡中的余额为w元.
(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,周长为C,圆周率(圆周长与直径之比)为.
(4)把10本书随意放入两个抽昼(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.
4、用列表法与解析式法表示n边形的内角和m(单位:度)关于边数n的函数.
5、下表是小华做观察水的沸腾实验时所记录的数据:
时间(分) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
温度(℃) | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 | 100 | 100 | 100 | 100 |
(1)时间是8分钟时,水的温度为_____;
(2)此表反映了变量_____和_____之间的关系,其中_____是自变量,_____是因变量;
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.
【详解】
解:由图象可得,
甲的速度是,故选项符合题意;
乙的速度为:,故选项不符合题意;
甲先到达地,故选项不符合题意;
甲出发小时后两人第一次相遇,故选项不符合题意;
故选:A.
【点睛】
本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.
2、C
【解析】
【分析】
根据A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的图象逐一判断即可.
【详解】
由图象可知:
①月上网时间不足35小时,选择方式A最省钱,说法正确;
②月上网时间超过55小时且不足80小时,选择方式B最省钱,故原说法错误;
③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元,说法正确;
④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费为:(60﹣30)÷[(35﹣25)×60]=0.05(元),原说法正确;
所以所有合理推断的序号是①③④.
故选:C.
【点睛】
本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.
3、D
【解析】
【分析】
函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,
只有D正确.
故选:D.
【点睛】
本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
4、B
【解析】
【分析】
先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.
【详解】
解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,
故选项A正确;
设小南t小时追上小开,
50(2+1+0.5+t)=100t,
解得t=3.5,
∴100×3.5=350千米,
故选项B不正确;
50(2+1+0.5+t+0.5)=100t,
解得t=4,
∴小南到达景区时共用2+1+0.5+4=7.5小时,
故选项C正确;
∵100×4=400千米,
∴家距离景区共400千米,
故选项D正确.
故选B.
【点睛】
本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.
5、D
【解析】
【分析】
直接根据函数图像进行解答即可.
【详解】
解:此函数大致可分以下几个阶段:
①0﹣15分种,小强从家走到菜地;
②15﹣25分钟,小强在菜地浇水;
③25﹣37分钟,小强从菜地走到玉米地;
④37﹣55分钟,小强在玉米地除草;
⑤55﹣80分钟,小强从玉米地回到家;
综合上面的分析得:由③的过程知,a=2﹣1.1=0.9千米;
由②、④的过程知b=(55﹣37)﹣(25﹣15)=8分钟;
故选:D.
【点睛】
本题考查了从函数图像中提取信息,读懂题意,理解函数图像的含义是解本题的关键.
6、C
【解析】
【分析】
根据二次根式和分式有意义的条件列出不等式即可求解.
【详解】
解:根据题意可列不等式组为,
解得,,
故选:C.
【点睛】
本题考查了二次根式和分式有意义的条件,解题关键是明确二次根式被开方数大于或等于0,分母不得0.
7、C
【解析】
【分析】
先用x表示出矩形的长,然后根据矩形的面积公式即可解答.
【详解】
解:设矩形的宽为xcm,则长为(x+3)cm
由题意得:S=x(x+3)=x2+3x.
故选C.
【点睛】
本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.
8、D
【解析】
【分析】
根据小明1小时到达图书馆,图书馆距离家20千米,求出小明骑车的速度判断A选项;根据小明还书用了0.3小时判断B选项;设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2列出方程求出方程的解来判断C选项;根据妈妈的速度×妈妈所用的时间求公园距离小明家的距离来判断D选项.
【详解】
解:观察图象可知,小明1小时到达图书馆,图书馆距离家20千米,小明骑车的速度是20千米/小时,故A选项不符合题意;
1.3﹣1=0.3(小时)=18(分),故B选项不符合题意;
设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2得:2.5a+20×(2﹣1.7)=20×2,解得a=2.4,故C选项不符合题意;
2.4×2.5=6(千米),故D选项符合题意;
故选:D.
【点睛】
本题考查了函数的图象,求出妈妈的速度是解题的关键.
9、C
【解析】
【分析】
由题意知,求解即可.
【详解】
解:由题意知
∴
故选C.
【点睛】
本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.
10、D
【解析】
【分析】
根据函数的定义,按照一一对应的原则去判断即可. 当任意一个都有唯一的一个与之对应,则称是的函数.
【详解】
当任意一个都有唯一的一个与之对应,则称是的函数.
由图象可知:A,B,C选项都不符合题意,
D选项符合题意.
故选D.
【点睛】
本题考查了函数的图像表示法,正确理解变量之间的一一对应思想是解题的关键.
二、填空题
1、 自变量 函数 取值范围
【解析】
略
2、 3
【解析】
【分析】
分别将和代入解析式,即可求解.
【详解】
解:当时,;
当时, ,解得: .
故答案为:3; .
【点睛】
本题主要考查了求函数的自变量和函数值,解题的关键是理解并掌握当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.
3、单价
【解析】
【分析】
根据常量与变量的定义即可判断.
【详解】
解:常量是固定不变的量,变量是变化的量,
单价6.48是不变的量,而金额是随着数量的变化而变化,
∴常量是:单价.
故答案为:单价.
【点睛】
本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.
4、
【解析】
【分析】
根据正方形的面积公式列出函数关系式即可;
【详解】
y=x2
【点睛】
本题考查列函数关系式,掌握正方形的面积公式是得出函数关系式的前提.
5、26
【解析】
【分析】
根据题意可得剩下的水量y=50−2t,故可求出放水12分钟后的水量.
【详解】
解:设剩下的水量为y,时间为t,
则可得y=50−2t,
∴放水12分钟后,水池中剩下的水量为:y=50−2×12=26m3,
故答案为:26.
【点睛】
本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式.
三、解答题
1、 (1)-4≤x≤3
(2)-2≤y≤4
(3)1;-2
(4)-2≤x≤1
【解析】
【分析】
根据自变量的定义,函数值的定义以及函数的最值和增减性,观察函数图象分别写出即可.
(1)
根据图像观察可得:自变量x的取值范围是-4≤x≤3;
(2)
根据图像观察可得:函数y的取值范围是-2≤y≤4;
(3)
根据图像观察可得:当x为1时,函数值最大;当x为-2时,函数值最小;
(4)
根据图像观察可得:当y随x的增大而增大时,x的取值范围是-2≤x≤1.
【点睛】
本题考查了函数的性质、函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题的关键.
2、(1)圆锥的底面半径,圆锥的体积;(2)V=2πr2;(3)2π;200π.
【解析】
【分析】
(1)圆锥的体积随着底面半径的变化而变化,于是圆锥的底面半径为自变量,圆锥的体积为因变量;
(2)由圆锥的体积公式:V=π•r2•h,h=6,可得函数关系式;
(3)根据函数关系式,求出当r=1cm和r=10cm时的体积V即可.
【详解】
解:(1)由于圆锥的体积随之底面半径的变化而变化,因此圆锥的底面半径为自变量,圆锥的体积为因变量,
故答案为:圆锥的底面半径,圆锥的体积;
(2)当h=6时,由圆锥的体积公式:V=π•r2•h可得,
由圆锥的体积公式:V=π•r2•h可得,
V=2πr2,
故答案为:V=2πr2;
(3)当r=1cm时,V=2π(cm3),
当r=10cm时,V=2π×102=200π(cm3),
故答案为:2π,200π.
【点睛】
本题考查变量之间的关系,函数关系式,理解函数的意义,掌握圆锥的体积的计算方法是正确解答的前提.
3、(1)变量x,y;常量4.(2)变量t,w;常量0.2,30.(3)变量r,C;常量.(4)变量x,y;常量10.
【解析】
【分析】
根据常量与变量的定义求解即可.
【详解】
解:(1)由题意可知,变量为x,y,常量为4;
(2)由题意可知,变量为t,w,常量为0.2,30;
(3)由题意可知,变量为r,C,常量为;
(4)由题意可知,变量为x,y,常量为10.
【点睛】
本题考查常量与变量的定义,常量是指在变化过程中不随时间变化的量;变量是指在变化过程中随着时间变化的量.
4、列表法见解析,且n为整数
【解析】
【分析】
从一点和边上的其他点连接分成三角形的个数为点数减去2,也就是边数减2,由于三角形的内角和是180°,所以多边形内角和与它的边数关系为多边形内角和=(边数﹣2)×180°,由此规律计算即可求解.
【详解】
解:
图 例 | … | n边形 | |||
边 数n | 3 | 4 | 5 | … | n |
内角和m/度 | 180=180×(3﹣2) | 360=180×(4﹣2) | 540=180×(5﹣2) | … | 180×(n﹣2) |
故n边形的内角和m(单位:度)关于边数n的函数为m=180°(n﹣2),(n≥3且n为整数).
【点睛】
本题考查了函数的表达形式,函数的表达形式有列表法、图像法以及解析式法,熟练掌握多边形内角和的推导过程是解决本题的关键.
5、(1)100℃;(2)温度,时间,时间,温度
【解析】
【分析】
(1)根据表格中的数据求解即可;
(2)观察表格可知,反映的是温度随时间的变化而变化由此即可得到答案.
【详解】
解:(1)观察表格可知:第8分钟时水的温度为100℃;
(2)观察表格可知反映的是温度随着时间的变化而变化的,时间是自变量,温度是因变量;
故答案为(1)100℃;(2)温度,时间,时间,温度.
【点睛】
本题主要考查了用表格表示变量之间的关系,解题的关键在于能够熟练掌握自变量与因变量的定义.
初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题,共22页。试卷主要包含了如图所示的图象,函数中,自变量x的取值范围是等内容,欢迎下载使用。
2020-2021学年第二十章 函数综合与测试同步测试题: 这是一份2020-2021学年第二十章 函数综合与测试同步测试题,共21页。试卷主要包含了函数中,自变量x的取值范围是,函数y=的自变量x的取值范围是,如图所示的图象等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试课时训练: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共25页。试卷主要包含了变量,有如下关系,下列图像中表示是的函数的有几个等内容,欢迎下载使用。