搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版八年级数学下册第二十章函数专题测试试题(含详细解析)

    精品试题冀教版八年级数学下册第二十章函数专题测试试题(含详细解析)第1页
    精品试题冀教版八年级数学下册第二十章函数专题测试试题(含详细解析)第2页
    精品试题冀教版八年级数学下册第二十章函数专题测试试题(含详细解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第二十章 函数综合与测试复习练习题

    展开

    这是一份2020-2021学年第二十章 函数综合与测试复习练习题,共21页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
    冀教版八年级数学下册第二十章函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下图中表示yx函数的图象是(       A. B.C. D.2、下列图像中表示的函数的有几个(       A.1个 B.2个 C.3个 D.4个3、函数中,自变量x的取值范围是(       A. B. C. D.4、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为(千米),速度为(千米/分),时间为(分)下列函数图象能表达这一过程的是(       A. B.C. D.5、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是(  )A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是yy随着这个数x的变化而变化,yx之间的关系6、下面关于函数的三种表示方法叙述错误的是(        )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示7、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是(       A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米C.小南到达景区时共用时7.5小时 D.家距离景区共400千米8、在函数中,自变量x的取值范围是(  )A.x≥﹣1 B.x≠3 C.x>﹣1 D.x≥﹣1且x≠39、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为(       A.800元 B.600元 C.1200元 D.1000元10、甲、乙两人分别从AB两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离ym)与甲所用时间xmin)之间的函数关系如图所示,给出下列结论:①AB之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为(  )A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、函数的定义域是 _____.2、如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,加油过程中的常量是________.3、一般地,在一个变化过程中,如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是__________,yx的__________.如果当xa时,yb,那么b叫做当自变量的值为a时的__________.4、小亮从学校步行回家,图中的折线反映了小亮离家的距离S(米)与时间t(分钟)的函数关系,根据图象提供的信息,给出以下结论:①他在前12分钟的平均速度是70米/分钟;②他在第19分钟到家;③他在第15分钟离家的距离和第24分钟离家的距离相等;④他在第33分钟离家的距离是720米.其中正确的序号为 ___.5、长方形的周长为20,则面积y与一条边长x之间的函数关系式是___.三、解答题(5小题,每小题10分,共计50分)1、如图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家,其中表示时间,表示小明离他家的距离,根据图象回答问题:(1)菜地离小明家  km;(2)小明走到菜地用了  min;(3)小明给菜地浇水用了  min;(4)小明从菜地到玉米地走了  km;(5)小明从玉米地走回家平均速度是  km/min.2、已知动点P以2cm/s的速度沿图1所示的边框从B-C-D-E-F-A的路径运动,记△ABP的面积为Scm2),S与运动时间ts)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=________ cmCD=________ cmDE=________ cm(2)求图2中mn的值.3、AB两地相距60km,甲乙两人沿同一条路从A地前往B地,甲先出发.图中l1l2表示甲乙两人离A地的距离y(km)与乙所用时间x(h)之间的关系,请结合图象回答下列问题:(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是    (填l1l2);(2)当其中一人到达B地时,另一人距B    km;(3)乙出发多长时间时,甲乙两人刚好相距10km?4、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函教,并写出表示函数与自变量关系的式子.5、图中的折线表示一骑车人离家的距离y与时间x的关系.骑车人9:00离开家,15:00回家.请你根据这个折线图回答下列问题:(1)这个人何时离家最远?这时他家多远?(2)何时他开始第一次休息?休息多长时间?这时他离家多远?(3)11:00~12:30他骑了多少千米?(4)他在9:00~10:30和10:30~12:30的平均速度各是多少?(5)他返家时的平均速度是多少?(6)14:00时他离家多远?何时他距家 -参考答案-一、单选题1、C【解析】【分析】函数就是在一个变化过程中有两个变量xy,当给x一个值时,y有唯一的值与其对应,就说yx的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义,表示yx函数的图象是C故选:C【点睛】理解函数的定义,是解决本题的关键.2、A【解析】【分析】函数就是在一个变化过程中有两个变量xy,当给定一个x的值时,y由唯一的值与之对应,则称yx的函数,x是自变量,注意“y有唯一性”是判断函数的关键.【详解】解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,故第2个图符合题意,其它均不符合,故选:A.【点睛】本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.3、B【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x-2≥0且x−3≠0,解得故选:B【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4、C【解析】【分析】因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.【详解】解:∵400×5=2000(米)=2(千米),∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米,而选项AB中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A与B;又∵回到原出发地”表示终点的纵坐标为0,∴排除选项D故选:C.【点睛】本题考查了函数的图象,解题的关键是理解函数图象的意义.5、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,yx的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,对于每一个确定的xy都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.6、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.7、B【解析】【分析】先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.【详解】解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,故选项A正确;设小南t小时追上小开,50(2+1+0.5+t)=100t,解得t=3.5,∴100×3.5=350千米,故选项B不正确;50(2+1+0.5+t+0.5)=100t解得t=4,∴小南到达景区时共用2+1+0.5+4=7.5小时,故选项C正确;∵100×4=400千米,∴家距离景区共400千米,故选项D正确.故选B.【点睛】本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.8、D【解析】【分析】根据分式的分母不为零,二次根式被开方数非负即可得到不等式组,解不等式组即可.【详解】由题意得: 解得: 故选:D【点睛】本题考查了函数有意义的自变量的取值范围,一般地:若解析式中有分式,则分母不为零,若有二次根式,则被开方数非负,其余情况下自变量取值无限制,实际问题要具体情况具体分析.9、D【解析】【分析】代入函数关系式即可得.【详解】解:将代入得:即获利为1000元,故选:D.【点睛】本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.10、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在AB两地还未出发AB之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m由图象可知乙用了24-4=20min走完了1200m故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米b=800故③正确从24min开始为甲独自行走1200-800=400mt=mina=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.二、填空题1、x≠0【解析】【分析】由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.【详解】解:函数的定义域是:x≠0.故答案为:x≠0.【点睛】本题考查求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2、单价【解析】【分析】常量是指在变化过程中,数值始终不变的量【详解】解:加油过程中,单价×数量=总价,此时,单价是常量,数量和金额是变量.故答案为:单价【点睛】本题考查常量的定义,牢记相关的知识点是解题关键.3、     自变量     函数     函数值【解析】4、①④【解析】【分析】由图象可以直接得出前12分钟小亮的平均速度,从而得出①正确;由图象可知从12分到19分小亮又返回学校,可以判断②错误;分别求出小亮第15分和第24分离家距离可以判断③错误;求出小亮33分离家距离,可以判断④正确.【详解】解:由图象知,前12分中的平均速度为:(1800−960)÷12=70(米/分),故①正确;由图象知,小亮第19分中又返回学校,故②错误;小亮在返回学校时的速度为:(1800−960)÷(19−12)=840÷7=120(米/分),∴第15分离家距离:960+(15−12)×120=1320,从21分到41分小亮的速度为:1800÷(41−21)=1800÷20=90(米/分),∴第24分离家距离:1800−(24−21)×90=1800−270=1530(米),∵1320≠1530,故③错误;小亮在33分离家距离:1800−(33−21)×90=1800−1080=720(米),故④正确,故答案为:①④.【点睛】本题考查函数图像,关键是利用已知信息和图象所给的数据分析题意,依次解答.5、【解析】【详解】解:∵长方形的周长为20,一条边为x∴长方形的另一条边为故答案为:【点睛】本题主要考查了列函数关系式,解题的关键在于能够熟练掌握长方形周长公式和面积公式.三、解答题1、 (1)1.1(2)15(3)10(4)0.9(5)0.08【解析】【分析】结合已知、图象逐一进行分析即可解题.(1)解:由图象可知:菜地离小明家1.1千米故答案为:1.1;(2)由图象可知:小明从家到菜地用了15分钟故答案为:15;(3)由图象可知:小明给菜地浇水用了(分钟)故答案为:10;(4)由图象可知:小明从菜地到玉米地走了(千米)故答案为:0.9;(5)由图象可知:玉米地离小明家2千米,小明从玉米地走回家的平均速度为:2、(1)8,4,6;(2)m=24,n=17.【解析】【分析】(1)因为点P速度为2cm/s,所以根据右侧的时间可以求出线段BCCDDE的长度;(2)m代表的是点PC时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.【详解】解:(1)∵点P速度为2cm/s由右侧图象可知,点PBC线段运动了4秒,∴BC=42=8(cm),PCD线段运动了6-4=2秒,∴CD=22=4(cm),PDE线段运动9-6=3秒,∴DE=32=6(cm),故答案为:8,4,6;(3)当点PC时,ABP的面积为ABBC=68=24(cm2),m=24,BC+CD+DE+EF+AF=8+4+6+(6-4)+(8+6)=34(cm),n=34×=17.【点睛】本题考查了动点问题的函数图象,数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.3、(1);(2)10;(3)乙出发1小时或3小时时,甲乙两人刚好相距10km【解析】【分析】(1)根据甲比乙先出发,则当乙出发时,甲离A地已经有一段的距离,即在函数图像上表现为当时,,由此求解即可;(2)先求出甲的速度为10千米/小时,乙的速度为20千米/小时,即可求出乙到达B地需要的时间=60÷20=3小时,则此时甲所走的距离=20+10×3=50千米,由此即可得到答案;(3)分乙追上甲前和乙追上甲后两种情况讨论求解即可.【详解】解:(1)∵甲比乙先出发,∴当乙出发时,甲离A地已经有一段的距离,即在函数图像上表现为当时,∴表示甲离A地的距离ykm)与乙所用时间xh)之间关系的是故答案为:(2)由函数图像可知,乙两小时行驶了40千米,甲2小时行驶了20千米,∴甲的速度为10千米/小时,乙的速度为20千米/小时,∴乙到底B地需要的时间=60÷20=3小时,∴此时甲所走的距离=20+10×3=50千米,∴此时甲距离B地的距离=60-50=10千米,故答案为:10;(3)设乙出发t小时时,甲乙两人刚好相距10km,当乙未追上甲时:解得当乙追上甲后:解得∴乙出发1小时或3小时时,甲乙两人刚好相距10km.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.4、常量0.2,变量xy,自变量x,函数y【解析】【分析】根据总价=单价×数量,可得函数关系式.再根据函数的有关定义解答即可.【详解】解:由题意得:x是正整数),yx的函数,∴常量0.2,变量xy,自变量x,函数y【点睛】主要考查了常量与变量.函数的定义:在一个变化过程中,有两个变量xy,对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数,x叫自变量.5、(1)12:30~13:30,;(2)10:30,;(3);(4);(5);(6),14:30【解析】【分析】(1)直接观察图象,即可求解;(2)直接观察图象,即可求解;(3)用12:30时对应的距离减去11:00对应的距离,即可求解;(4)根据平均速度等于该时间段的路程除以时间,即可求解;(5)根据平均速度等于该时间段的路程除以时间,即可求解;(6)可先求出14:00到15:00的1小时内的平均速度,可得他距家时,从14:00所骑的路程,即可求解.【详解】解:(1)由图可知,这个人12:30-13:30时,离家最远,这时他离家45km(2)由图可知,10:30时他开始第一次休息,从10:30到11:00,共休息了0.5h,这时他离家30km(3)11:00~12:30他骑了45-30=15km(4)他在9:00-10:30的1.5小时内的平均速度为:30÷1.5=20km/h10:30~12:30的2小时内的平均速度为:(45-30)÷2=7.5km/h(5)由图象可得:他返家时间为从13:30到15:00,共1.5h45÷1.5=30km/h即他返家时的平均速度是30km/h(6)由图可知,14:00时他离家18km14:00到15:00的1小时内的平均速度为:18÷1=18km/h(18-9)÷18=0.5h即回家路上,14:30时他离家9km【点睛】本题主要考查了函数图象的意义,能准确从函数图象获取信息是解题的关键. 

    相关试卷

    冀教版八年级下册第二十章 函数综合与测试当堂达标检测题:

    这是一份冀教版八年级下册第二十章 函数综合与测试当堂达标检测题,共20页。

    初中数学冀教版八年级下册第二十章 函数综合与测试课时训练:

    这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共22页。

    初中冀教版第二十章 函数综合与测试课时作业:

    这是一份初中冀教版第二十章 函数综合与测试课时作业,共24页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map