搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专题攻克练习题(精选)

    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专题攻克练习题(精选)第1页
    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专题攻克练习题(精选)第2页
    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专题攻克练习题(精选)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试课堂检测

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试课堂检测,共25页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是(       A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶22、如图,在正方形ABCD中,AB=3,点EF分别在边ABCD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为(       A.1 B. C. D.23、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积(  )A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变4、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形(       A.OAOCOBOD B.ABCDAOCOC.ABCDADBC D.∠BAD=∠BCDABCD5、如图①,在ABCD中,动点P从点B出发,沿折线BCDB运动,设点P经过的路程为xABP的面积为yyx的函数,函数的图象如图②所示,则图②中的a值为(  )A.3 B.4 C.14 D.186、正方形具有而矩形不一定具有的性质是(       A.四个角相等 B.对角线互相垂直C.对角互补 D.对角线相等7、如图,已知长方形分别是上的点,分别是的中点,当点上从点向点移动,而点不动时,那么下列结论成立的是(     A.线段的长逐渐增大 B.线段的长逐渐减少C.线段的长不变 D.线段的长先增大后变小8、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是(  )A.矩形 B.菱形 C.正方形 D.梯形9、如图,已知矩形ABCD中,RP分别是DCBC上的点,EF分别是APRP的中点,当PBC上从BC移动而R不动时,那么下列结论成立的是(       A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定10、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 (  )A.5 B.6 C.8 D.10第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,ACBCEAB中点,若CE=3,则CD=____.2、如图,已知正方形ABCD的边长为12,BEEC,将正方形边CD沿DE折叠到DF,延长EFABG,连接DG,现在有如下3个结论:①△ADG≌△FDG;②GB=2AG;③SBEF.在以上3个结论中,正确的有______.(填序号)3、如图,AC为正方形ABCD的对角线,EAC上一点,连接EBED,当时,的度数为______.4、如图,已知矩形ABCD中,AD=3,AB=5,E是边DC上一点,将ADE绕点A顺时针旋转得到,使得点D的对应点落在AE上,如果的延长线恰好经过点B,那么DE的长度等于_____.5、五边形内角和为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交ADBCEF点,交BDO点.(2)在(1)的条件下,求证:AE=CF2、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点轴的正半轴上,点轴的正半轴上,,在边上取一点,将纸片沿翻折,使点落在边上的点处.(1)直接写出点的坐标____________________;(2)求两点的坐标.3、已知:如图,在ABCD中,AEBC,点EF分别为垂足.(1)求证:ABE≌△CDF(2)求证:四边形AECF是矩形.4、已知在中,,点在同一直线上,射线分别平分 (1)如图1,试说明的理由;(2)如图2,当交于点G时,设,求的数量关系,并说明理由;(3)当时,求的度数.5、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③(2)【结论运用】如图2,正方形的边长为6,点O是对角线的交点,点E上,过点C,垂足为F,连接①求证:②若,求的长. -参考答案-一、单选题1、D【解析】2、D【解析】【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=xAE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.【详解】解:∵四边形ABCD是正方形,ABCD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E∴∠AEB'=180°-∠BEF-∠FEB'=60°,B'E=2AEBE=x,则B'E=xAE=3-x∴2(3-x)=x解得x=2.故选:D.【点睛】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.3、D【解析】【分析】连接AE,根据,推出,由此得到答案.【详解】解:连接AE故选:D.【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.4、B【解析】5、A【解析】【分析】由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出CBD高,进而求解.【详解】解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,过点BBHDC于点HCH=x,则DH=8-xBH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x2=62-x2解得:则:故选:A.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.6、B【解析】7、C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EFAR,因此线段EF的长不变.【详解】解:连接分别是的中点,的中位线,,为定值.线段的长不改变.故选:【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.8、B【解析】【分析】根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.【详解】展得到的图形如上图,由操作过程可知:AB=CDBC=AD∴四边形ABCD是平行四边形,ACBD∴四边形ABCD为菱形,故选:B.【点睛】本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.9、C【解析】【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【详解】解:连接AR因为EF分别是APRP的中点,EF的中位线,所以,为定值.所以线段的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.10、A【解析】【分析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.【详解】解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,∴每个外角是:180°−108°=72°,∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.故选:A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.二、填空题1、6【解析】【分析】ACBCEAB中点,若CE=3,根据直角三角形斜边的中线等于斜边的一半,可求得AB的长,然后由平行四边形的性质,求得答案.【详解】解:∵ACBCEAB中点,AB=2CE=2×3=6,∵四边形ABCD是平行四边形,CD=AB=6.故答案为:6.【点睛】此题考查了平行四边形的性质以及直角三角形的性质.注意平行四边形的对边相等.2、①②③【解析】【分析】根据正方形的性质和折叠的性质可得,于是根据“”判定,再由为直角三角形,可通过勾股定理列方程求出,进而求出的面积.【详解】解:由折叠可知,中,,故①正确;正方形边长是12,,则由勾股定理得:即:解得:,故②正确;,故③正确;故答案为:①②③.【点睛】本题考查了翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用这些性质解决问题.3、18°##18度【解析】【分析】由“SAS”可证DCE≌△BCE,可得∠CED=∠CEB=BED=63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD是正方形,AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,DCEBCE中,∴△DCE≌△BCESAS),∴∠CED=∠CEB=BED=63°,∵∠CED=∠CAD+∠ADE∴∠ADE=63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明DCE≌△BCE是本题的关键.4、【解析】【分析】如图,连接BEBE′,根据矩形的性质和旋转变换的性质可得:AD′=AD=3,∠ADE=∠D=90°,利用勾股定理可得BD′=4,再运用等面积法可得:ABADAEBD′,求出AE,再运用勾股定理即可求得答案.【详解】解:如图,连接BEBE′,∵矩形ABCD中,AD=3,AB=5,∴∠D=90°,由旋转知,△ADE′≌△ADEAD′=AD=3,∠ADE=∠D=90°,DE′的延长线恰好经过点B∴∠ADB=90°,RtABD′中,BD′==4,SABE=ABADAEBD′,AERtADE中,DE故答案为:【点睛】本题考查矩形的性质、旋转性质、勾股定理、三角形的面积,熟练掌握矩形性质和旋转性质,会利用等面积法求解是解答的关键.5、540°【解析】【分析】根据n边形的内角和公式(n-2)·180°求解即可.【详解】解:五边形内角和为(5-2)×180°=540°,故答案为:540°.【点睛】本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作.(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBCEFBD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD在△EOD与△FOB中,∴△EOD≌△FOBASA),ED=BFAD-ED=BC-BF,即AE=CF【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、 (1)(10,8)(2)D(0,5),E(4,8)【解析】【分析】(1)根据,可得点的坐标;(2)根据折叠的性质,可得AE=AOOD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;(1)解:∵点的坐标(10,8),故答案为:(10,8);(2)解:依题意可知,折痕AD是四边形OAED的对称轴,RtABE中,AE=AO=10,AB=OC=8,由勾股定理,得BE= =6,CE=BC-BE=10-6=4,E(4,8).RtDCE中,由勾股定理,得DC2+CE2=DE2又∵DE=ODCD=8-OD(8-OD)2+42=OD2解得OD=5,D(0,5).所以D(0,5),E(4,8);【点睛】本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.3、 (1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行四边形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理(定理)即可得证;(2)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据矩形的判定即可得证.(1)证明:四边形是平行四边形,中,(2)证明:四边形是平行四边形,在四边形中,四边形是矩形.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.4、 (1)理由见解析(2),理由见解析(3)【解析】【分析】(1)可知,进而可说明(2)如图1所示,连接并延长至点K分别平分,则设的外角,,同理,得;又由(1)中证明可知,进而可得到结果;(3)如图2所示,过点C,则,可得,由(1)中证明可得,在中, ,即,进而可得到结果.(1)证明:(2)解:理由如下:如图1所示,连接并延长至点K分别平分则设的外角同理可得又由(1)中证明可知由三角形内角和公式可得(3)解:当时,如图2所示,过点C,则,即由(1)中证明可得中,根据三角形内角和定理有,解得:【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.5、 (1)见解析;(2)①见解析;②【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,整理出,再结合即可证明②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)四边形ABCD是正方形中,【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共24页。试卷主要包含了如图,在中,DE平分,,则,如图,在正方形ABCD中,点E等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试巩固练习:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试巩固练习,共28页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。

    初中数学第二十二章 四边形综合与测试课后测评:

    这是一份初中数学第二十二章 四边形综合与测试课后测评,共29页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map