终身会员
搜索
    上传资料 赚现金

    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专题练习试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专题练习试卷(精选含详解)第1页
    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专题练习试卷(精选含详解)第2页
    2021-2022学年基础强化冀教版八年级数学下册第二十二章四边形专题练习试卷(精选含详解)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试巩固练习

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试巩固练习,共28页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于( )

    A. B. C. D.
    2、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    3、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )

    A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)
    4、六边形对角线的条数共有( )
    A.9 B.18 C.27 D.54
    5、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )

    A.1 B. C. D.2
    6、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是(  )
    A.6 B.12 C.24 D.48
    7、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记的面积为,的面积为,若正方形的边长,,则的大小为( )

    A.6 B.7 C.8 D.9
    8、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )

    A.14 B.16 C.18 D.12
    9、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )

    A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小
    10、在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是( )
    A.∠ABC=90° B.AC⊥BD C.AB=CD D.AB∥CD
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平行四边形 ABCD 中,∠D=100°,AC 为对角线,将△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,使点 D 的对应点 E 落在边 AB 上,若点 C 的对应点 F 落在边CB 的延长线上,则∠EFB 的度数为___.

    2、如图,菱形ABCD的边长为4,∠BAD=120°,E是边CD的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60°得到线段EF',连接AF'、BF',则△ABF'的周长的最小值是________________.

    3、如图,已知在△ABC中,D,E分别是AB,AC的中点,F,G分别是AD,AE的中点,且FG=2 cm,则BC的长度是_______ cm.

    4、若一个多边形的内角和是外角和的倍,则它的边数是_______.
    5、如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,AC的中点,已知DF=5,则AE=_____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.

    2、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.

    3、如图,直线,线段分别与直线、交于点、点,满足.

    (1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)
    (2)求证:四边形为菱形.(请补全下面的证明过程)
    证明:
    ____①____
    垂直平分

    ∴____②____
    ____③____



    ∴四边形是___④_____

    ∴四边形是菱形(______⑤__________)(填推理的依据).
    4、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.
    5、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.

    (1)如图1,若,,求CD的长;
    (2)如图2,若G为EF上一点,且,求证:.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.
    【详解】
    ∵,
    ∴AB=2BC,
    又∵点D,E分别是AB,BC的中点,
    ∴设BE=x,则EC=x,AD=BD=2x,

    ∵四边形ABGF是正方形,
    ∴∠ABF=45°,
    ∴△BDH是等腰直角三角形,
    ∴BD=DH=2x,
    ∴S1=DH•AD=,即2x•2x=,
    ∴x2=,
    ∵BD=2x,BE=x,
    ∴S2=MH•BD=(3x−2x)•2x=2x2,
    S3=EN•BE=x•x=x2,
    ∴S2+S3=2x2+x2=3x2=,
    故选:B.
    【点睛】
    本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.
    2、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    3、B
    【解析】
    【分析】
    分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标
    【详解】
    如图,分别过点和点作轴于点,作轴于点,

    ∴,
    ∵四边形为菱形,
    ∴点为的中点,
    ∴点为的中点,
    ∴,,
    ∵,
    ∴;
    由题意知菱形绕点逆时针旋转度数为:,
    ∴菱形绕点逆时针旋转周,
    ∴点绕点逆时针旋转周,
    ∵,
    ∴旋转60秒时点的坐标为.
    故选B
    【点睛】
    根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
    4、A
    【解析】
    【分析】
    n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.
    【详解】
    解:六边形的对角线的条数= =9.
    故选:A.
    【点睛】
    本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).
    5、D
    【解析】
    【分析】
    由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB∥CD,∠A=90°,
    ∴∠EFD=∠BEF=60°,
    ∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
    ∴∠BEF=∠FEB'=60°,BE=B'E,
    ∴∠AEB'=180°-∠BEF-∠FEB'=60°,
    ∴B'E=2AE,
    设BE=x,则B'E=x,AE=3-x,
    ∴2(3-x)=x,
    解得x=2.
    故选:D.
    【点睛】
    本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
    6、C
    【解析】
    【分析】
    利用菱形的面积公式即可求解.
    【详解】
    解:菱形ABCD的面积===24,
    故选:C.
    【点睛】
    本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.
    7、D
    【解析】
    【分析】
    由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.
    【详解】
    解:∵正方形ABCD的对角线AC,BD交于点O,
    ∴OC=OD=BO=AO,∠ABO=∠ACB=45°,AC⊥BD.
    ∵∠MOB+∠BON=90°,∠BON+∠CON=90°
    ∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,
    ∴△BOM≌△CON(ASA),=S△BOM,
    ∴,
    ∵=S正方形ABCD,正方形的边长,,
    ∴=S正方形ABCD -=.
    故选:D.
    【点睛】
    本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.
    8、B
    【解析】
    【分析】
    根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
    【详解】
    解:在正方形ABCD中,,,,
    ∵F为DE的中点,O为BD的中点,
    ∴OF为的中位线且CF为斜边上的中线,
    ∴,
    ∴的周长为,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,,,,
    ∴,
    ∴的周长为,
    故选:B.
    【点睛】
    题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
    9、A
    【解析】
    【分析】
    根据题意,作交的延长线于,证明是的角平分线即可解决问题.
    【详解】
    解:作交的延长线于,

    ∵四边形 是正方形,
    ∴,

    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∵四边形是平行四边形,
    ∴,,
    ∵, ,
    ∴,
    ∵,.
    ∴,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴是的角平分线,
    ∴点的运动轨迹是的角平分线,
    ∵,
    由图可知,点P从点D开始运动,所以一直减小,
    故选:A .
    【点睛】
    本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    10、B
    【解析】

    二、填空题
    1、20°##20度
    【解析】
    【分析】
    根据平行四边形 ABCD 性质求出∠DAB=180°-∠D=80°,根据△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.
    【详解】
    解:在平行四边形 ABCD 中,∠D=100°,
    ∴∠DAB=180°-∠D=80°,
    ∵△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,
    ∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,
    ∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°
    ∴∠AFC=∠ACF=
    ∵AD∥BC,
    ∴∠DAC=∠ACF=50°,
    ∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,
    ∴∠AFE=∠ACD=30°,
    ∴∠EFB=∠AFC-∠AFE=50°-30°=20°,
    故答案为20°.
    【点睛】
    本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.
    2、4+2
    【解析】
    【分析】
    取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.
    【详解】
    解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,

    ∵四边形ABCD为菱形,
    ∴AB=AD,
    ∵∠BAD=120°,
    ∴∠CAD=60°,
    ∴△ACD为等边三角形,
    又∵DE=DG,
    ∴△DEG也为等边三角形.
    ∴DE=GE,
    ∵∠DEG=60°=∠FEF',
    ∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG,
    即∠DEF=∠GEF',
    由线段EF绕着点E顺时针旋转60°得到线段EF',
    所以EF=EF'.
    在△DEF和△GEF'中,

    ∴△DEF≌△GEF'(SAS).
    ∴∠EGF'=∠EDF=60°,
    ∴∠F'GA=180°﹣60°﹣60°=60°,
    则点F'的运动轨迹为射线GF'.
    观察图形,可得A,E关于GF'对称,
    ∴AF'=EF',
    ∴BF'+AF'=BF'+EF'≥BE,
    在Rt△BCH中,
    ∵∠H=90°,BC=4,∠BCH=60°,
    ∴,
    在Rt△BEH中,BE===2,
    ∴BF'+EF'≥2,
    ∴△ABF'的周长的最小值为AB+BF'+EF'=4+2,
    故答案为:4+2.
    【点睛】
    本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.
    3、8
    【解析】

    4、
    【解析】
    【分析】
    根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.
    【详解】
    解:设这个多边形的边数是n,
    根据题意得,(n−2)•180°=2×360°,
    解得n=6.
    答:这个多边形的边数是6.
    故答案为:6.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.
    5、5
    【解析】
    【分析】
    依题意,可得DF是△ABC的中位线,得到BC的边长;又结合直角三角形斜边中线是斜边的一半,即可求解;
    【详解】
    ∵ D,F分别为AB,AC的中点,
    ∴DF是△ABC的中位线,
    ∴BC=2DF=10,
    在Rt△ABC中,E为BC的中点,

    故答案为:5.
    【点睛】
    本题主要考查直角三角形性质及中线的性质,关键在熟练综合使用和分析;
    三、解答题
    1、
    【解析】
    【分析】
    连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.
    【详解】
    解:连接AC、CF,如图,

    ∵四边形ABCD和四边形CEFG都是正方形,
    ∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,
    ∴∠ACF=45°+45°=90°,
    在Rt△ACF中,
    ∵T为AF的中点,
    ∴,
    ∴CT的长为.
    【点睛】
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.
    2、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
    3、 (1)见解析
    (2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形
    【解析】
    【分析】
    (1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    (2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).
    (1)
    解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    如图所示

    (2)
    证明:,
    ∠2①,
    垂直平分 ,
    ,,
    ∴②△EOC,
    OF③,



    ∴四边形是平行四边形④,

    ∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),
    故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.
    【点睛】
    本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.
    4、20条
    【解析】
    【分析】
    多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.
    【详解】
    解:设此正多边形为正n边形.
    由题意得:,
    解得n=8,
    ∴此正多边形所有的对角线条数为:=20.
    答:这个正多边形的所有对角线有20条.
    【点睛】
    此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..
    5、 (1)7
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
    (2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
    (1)
    解:在中,AB∥CD,AB=CD,
    ∴∠EBF=∠CFB,
    ∵FB平分,
    ∴∠EFB=∠CFB,
    ∴∠EFB=∠EBF,
    ∴BE=EF=5,
    ∵AE=2,
    ∴CD=AB=AE+BE=7;
    (2)
    证明:如图,再CF上截取FN=FG,

    ∵,
    ∴ ,
    ∴∠BGF=∠BNF,
    ∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
    ∴∠BGF=∠BFN,
    ∴∠BFN=∠BNF,
    ∴∠BFD=∠BNC,
    ∵BC⊥BD,
    ∴∠CBD=90°,
    ∵∠BCD=45°,
    ∴∠BDC=∠BCD=45°,
    ∴BC=BD,
    ∴△BDF≌△BCN(AAS),
    ∴NC=FD,
    ∴CD=DF+FN+CN=2FD+FG,
    ∵AB=CD,
    ∴FG+2FD=AB.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试随堂练习题,共24页。试卷主要包含了如图,在中,DE平分,,则,如图,在正方形ABCD中,点E等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试同步训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试同步训练题,共28页。

    冀教版八年级下册第二十二章 四边形综合与测试课堂检测:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试课堂检测,共25页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map