![2021-2022学年度冀教版八年级数学下册第二十二章四边形综合训练试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12764621/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十二章四边形综合训练试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12764621/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十二章四边形综合训练试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12764621/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试复习练习题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试复习练习题,共25页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。
八年级数学下册第二十二章四边形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )A.菱形 B.矩形 C.直角梯形 D.等腰梯形2、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为( )A.4 B.6 C.8 D.123、将一长方形纸条按如图所示折叠,,则( )A.55° B.70° C.110° D.60°4、一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是( )A.5 B.4 C.7 D.65、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )A.1 B.4 C.2 D.66、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为( )A.22.5° B.27.5° C.30° D.35°7、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )A.a B.a C.a D.a8、在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )A.18 B.16 C.14 D.129、下列命题是真命题的有( )个.①一组对边相等的四边形是矩形;②两条对角线相等的四边形是矩形;③四条边都相等且对角线互相垂直的四边形是正方形;④四条边都相等的四边形是菱形;⑤一组邻边相等的矩形是正方形.A.1 B.2 C.3 D.410、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图1,在平面直角坐标系xOy中,□ABCD的面积为10,且边AB在x轴上.如果将直线y=﹣x沿x轴正方向平移,在平移过程中,记该直线在x轴上平移的距离为m,直线被平行四边形的边所截得的线段的长度为n,且n与m的对应关系如图2所示,那么图2中a的值是 ___,b的值是 ___.2、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.3、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O,在正方形外有一点P,,当正方形绕着点O旋转时,则点P到正方形的最短距离d的最大值为______.4、如图,在长方形中,,,、分别在边、上,且.现将四边形沿折叠,点,的对应点分别为点,,当点恰好落在边上时,则的长为______.5、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.三、解答题(5小题,每小题10分,共计50分)1、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③.(2)【结论运用】如图2,正方形的边长为6,点O是对角线、的交点,点E在上,过点C作,垂足为F,连接.①求证:.②若,求的长.2、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.3、如图,已知平行四边形ABCD.(1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,证明四边形BEDF为平行四边形.4、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.5、如图,在中,点D、E分别是边的中点,过点A作交的延长线于F点,连接,过点D作于点G.(1)求证:四边形是平行四边形:(2)若.①当___________时,四边形是矩形;②若四边形是菱形,则________. -参考答案-一、单选题1、B【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【详解】解:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形;故选:B.【点睛】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.2、B【解析】【分析】根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.【详解】解:四边形为菱形,,,,,,∴,∴,∴故选:.【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.3、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,,,.故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.4、D【解析】【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D.【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.5、C【解析】略6、A【解析】【分析】利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.【详解】解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,故选:A.【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.7、A【解析】【分析】根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.【详解】解:∵以△ABC的各边的中点为顶点作,∴的周长的周长.∵以各边的中点为顶点作,∴的周长的周长,…,∴的周长故选:A.【点睛】本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.8、B【解析】略9、B【解析】【分析】根据两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形进行判断即可.【详解】解:①一组对边相等的四边形不一定是矩形,错误;②两条对角线相等的平行四边形是矩形,错误;③四条边都相等且对角线互相垂直的四边形是菱形,错误;④四条边都相等的四边形是菱形,正确;⑤一组邻边相等的矩形是正方形,正确.故选:B.【点睛】此题考查考查平行四边形、矩形、菱形、正方形的判定方法,关键是根据矩形、正方形、菱形的判定解答.10、A【解析】【分析】如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.【详解】解:如图:过C作CE⊥OA,垂足为E,∵菱形OABC,∴OC=OA=4∵,∴∠OCE=30°∵OC=4∴OE=2∴CE= ∴点C的坐标为.故选A.【点睛】本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.二、填空题1、 7 【解析】【分析】在图1中,过点D,B,C作直线与已知直线y=﹣x平行,交x轴于点E,F,过D作DG⊥x轴于G,在图2中,取A'(2,0),E'(5,b),B'(a,b),F'(10,0),求出OA=m=2,OE=m=5,DE=n=b,则AE=3,OF=m=10,OB=m=a,根据▱ABCD的面积为10,求出DG=2,得到DE即为b值.【详解】解:在图1中,过点D,B,C作直线与已知直线y=﹣x平行,交x轴于点E,F,过D作DG⊥x轴于G,在图2中,取A'(2,0),E'(5,b),B'(a,b),F'(10,0),图1中点A对应图2中的点A',得出OA=m=2,图1中点E对应图2中的点E',得出OE=m=5,DE=n=b,则AE=3,图1中点F对应图2中的点F',得出OF=m=10,图1中点B对应图2中的点B',得出OB=m=a,∵a=OB=OF﹣BF,BF=AE=3,OF=10∴a=7,∵▱ABCD的面积为10,AB=OB﹣OA=7﹣2=5,∴DG=2,在Rt△DGE中,∠DEG=45°,∴DE==,故答案是:7,.【点睛】此题考查了平行四边形与函数图象的结合,正确掌握平行四边形的性质,直线y=﹣x与坐标轴夹角45度的性质,一次函数图象平行的性质,勾股定理,正确理解函数图象得到相关信息是解题的关键.2、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∴=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.3、3【解析】【分析】由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案【详解】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大, ∵正方形ABCD边长为6,O为正方形中心,∴AE=3,∠OAE=45°,OE⊥AB,∴OE=3,∵OP=6,∴d=PE=6-3=3;故答案为:3【点睛】本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.4、4【解析】【分析】由勾股定理求出F,得到D,过点作H⊥AB于H,连接BF,则四边形是矩形,求出HE,过点F作FG⊥AB于G,则四边形BCFG是矩形,利用勾股定理求出的长.【详解】解:在长方形中,,,由折叠得5,∴,∴13=2,过点作H⊥AB于H,连接BF,则四边形是矩形,∴AH=D=2,∵∠EF=∠BEF,∠FE=∠BEF,∴∠EF=∠FE,∴E=F=13,∴=5,过点F作FG⊥AB于G,则四边形BCFG是矩形,∴BG=FC=5,∴EG=13-5=8,∴=4故答案为4.【点睛】此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.5、18°##18度【解析】【分析】由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD是正方形,∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CED=∠CEB=∠BED=63°,∵∠CED=∠CAD+∠ADE,∴∠ADE=63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.三、解答题1、 (1)见解析;(2)①见解析;②.【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,,整理出,再结合即可证明;②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)①四边形ABCD是正方形②在中,在,.【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.2、【解析】【分析】连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.【详解】解:连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,∴∠ACF=45°+45°=90°,在Rt△ACF中,∵T为AF的中点,∴,∴CT的长为.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.3、 (1)见解析(2)见解析【解析】【分析】(1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;(2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.(1)如图,DE、BF为所作;(2)证明:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,AD∥BC,∵CE=CD,∴CE=AB,∵BF平分∠ABC,∴∠ABF=∠CBF,∵AFBC,∴∠CBF=∠F,∴∠ABF=∠F,∴AB=AF,∴CE=AF,即CB+BE=AD+DF,∴BE=DF,∵BEDF,∴四边形BEDF为平行四边形.【点睛】本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.4、150°【解析】【分析】先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.【详解】解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,∴∠ADC=180°-∠ADE=55°,∵∠A+∠B+∠C+∠ADE=360°,∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.【点睛】此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.5、 (1)见解析;(2)①3;②【解析】【分析】(1)根据三角形中位线的性质得到DEAB,BD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;(2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;②根据菱形的性质得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面积法求出答案.(1)证明:∵点D、E分别是边BC、AC的中点,∴DEAB,BD=CD,∵,∴四边形ABDF是平行四边形,∴AF=BD=CD,∴四边形是平行四边形;(2)解:①∵点D、E分别是边BC、AC的中点,∴DE=AB,∵四边形是平行四边形,∴DF=2DE=AB=3,∵四边形是矩形,∴AC=DF=3,故答案为:3;②∵四边形是菱形,∴DF⊥AC,∵DEAB,∴AB⊥AC,∴AD=BC=2.5, ∴AE=EC=2,∵∴∴,故答案为:.【点睛】此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.
相关试卷
这是一份2020-2021学年第二十二章 四边形综合与测试同步练习题,共28页。
这是一份冀教版八年级下册第二十二章 四边形综合与测试课时作业,共29页。
这是一份2020-2021学年第二十二章 四边形综合与测试同步测试题,共28页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)