


相似巩固练习2
展开
这是一份相似巩固练习2,共7页。
A.B.C.D.
2.如果两个相似三角形的面积比是1:4,那么它们的周长比是( )
A.1:16B.1:4C.1:6D.1:2
3.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则另一块草坪的周长是( ).
A.24米 B.54米 C.24米或54米 D.36米或54米
4. 图为△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB// DE.若△ABC与△DEC的面积相等,且EF=9,AB=12,则DF=( )
A.3 B.7 C.12 D.15
5.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( )
A.6米 B.8米 C.18米 D.24米
6. 要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变,那么它的边长要增大到原来的( )倍.
A.2 B.4 C.2 D.64
二、填空题
7.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为 .
8. 已知两个相似三角形的相似比为,面积之差为25,则较大三角形的面积为______.
9.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为 m.
10. 梯形ABCD中,AD∥BC,AC,BD交于点,若=4, =9,=________.
11.如图,在平行四边形ABCD中,点E为CD上一点,DE:CE=2:3,连接AE,BE,BD,且AE,BD交于点F,则________________.
12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的________倍.
三、解答题
13. 一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得树高是多少?
14.小红用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB的高度(注:入射角=反射角).
15. 在正方形中,是上一动点,(与不重合),使为直角,交正方形一边所在直线于点.
(1)找出与相似的三角形.
(2)当位于的中点时,与相似的三角形周长为,则的周长为多少?
一、选择题
1.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值( )
A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个
2. 若平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长为( ).
A.1.8 B.5 C.6或4 D.8或2
3.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为( )
A.B.C.D.
4.如图G是△ABC的重心,直线过A点与BC平行.若直线CG分别与AB、交于D、E两点,直线BG与AC交于 F点,则△AED的面积 :四边形ADGF的面积=( )
A.1:2 B.2:1 C.2:3 D.3:2
5.()如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )
A.=B.=C.=D.=
6.如图,在□ABCD中,E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点F,则
S△DEF:S△EBF:S△ABF等于( )
A.4:10:25 B.4:9:25 C.2:3:5 D.2:5:25
二、填空题
7.将一副三角板按图叠放,则△AOB与△DOC的面积之比等于 .
8.如图,△ABC中,点D在边AB上,满足∠ADC=∠ACB,若AC=2,AD=1,则DB=_________.
9.如图,在△PAB中,M、N是AB上两点,且△PMN是等边三角形,△BPM∽△PAN,则∠APB的度数是
_______________.
10.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为 .
11. 如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是_________________
12.如图,锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,
则AC边上的高为______________.
三、解答题
13. 为了测量图(1)和图(2)中的树高,在同一时刻某人进行了如下操作:
图(1):测得竹竿CD的长为0.8米,其影CE长1米,树影AE长2.4米.
图(2):测得落在地面的树影长2.8米,落在墙上的树影高1.2米,请问图(1)和图(2)中的树高各是多少?
14.某车库出口处设置有“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的连接点,当车辆经过时,栏杆AEF升起后的位置如图1所示(图2为其几何图形).其中AB⊥BC,DC⊥BC,EF∥BC,∠EAB=150°,AB=AE=1.2m,BC=2.4m.
(1)求图2中点E到地面的高度(即EH的长.≈1.73,结果精确到0.01m,栏杆宽度忽略不计);
(2)若一辆厢式货车的宽度和高度均为2m,这辆车能否驶入该车库?请说明理由.
15. 已知如图,在矩形ABCD中,AB=12cm,BC=6cm,点E自A点出发,以每秒1cm的速度向D点前进,同时点F从D点以每秒2cm的速度向C点前进,若移动的时间为t,且0≤t≤6.
(1)当t为多少时,DE=2DF;
(2)四边形DEBF的面积是否为定值?若是定值,请求出定值;若不是定值,请说明理由.
(3)以点D、E、F为顶点的三角形能否与△BCD相似?若能,请求出所有可能的t的值;若不能,请说明理由.
相关试卷
这是一份初中数学人教版九年级下册第二十七章 相似27.2 相似三角形27.2.2 相似三角形的性质习题,共7页。
这是一份中考总复习:图形的相似--巩固练习(基础),共8页。
这是一份中考总复习:图形的相似--巩固练习(提高),共10页。
