初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀测试题
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )
A.线段EF的长逐渐增大B.线段EF的长逐渐减小
C.线段EF的长不改变D.线段EF的长不能确定
2、如图,正方形的边长为,对角线、相交于点.为上的一点,且,连接并延长交于点.过点作于点,交于点,则的长为( )
A.B.C.D.
3、若n边形每个内角都为156°,那么n等于( )
A.8B.12C.15D.16
4、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
B.满足的三个数,,是勾股数
C.对角线相等的四边形各边中点连线所得四边形是矩形
D.五边形的内角和为
5、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )
A.8B.10C.16D.20
6、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
A.1B.C.D.2
7、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
A.AO=COB.AD∥BCC.AD=BCD.∠DAC=∠ACD
8、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:
①;
②;
③四边形是平行四边形;
④图中共有四对全等三角形.
其中正确结论的个数是( )
A.4B.3C.2D.1
9、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.
其中说法正确的是( )
A.②③B.①②③C.②④D.①②④
10、小明想判断家里的门框是否为矩形,他应该( )
A.测量三个角是否都是直角B.测量对角线是否互相平分
C.测量两组对边是否分别相等D.测量一组对角是否是直角
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、矩形的两边长分别为3 cm和4 cm,则矩形的对角线长为_____.
2、如图,在矩形中,的角平分线交于点,连接,恰好平分,若,则的长为______.
3、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.
4、如图,在长方形中,,,、分别在边、上,且.现将四边形沿折叠,点,的对应点分别为点,,当点恰好落在边上时,则的长为______.
5、在任意△ABC中,取AB、AC边中点D、E,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的______.
一个三角形有______条中位线.
三、解答题(5小题,每小题10分,共计50分)
1、(1)【发现证明】
如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.
(2)【类比引申】
①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
(3)【联想拓展】如图1,若正方形的边长为6,,求的长.
2、若直线分别交轴、轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥轴,B为垂足,且S△ABC= 6
(1)求点B和P的坐标;
(2)点D是直线AP上一点,△ABD是直角三角形,求点D坐标;
(3)请问坐标平面是否存在点Q,使得以Q、C、P、B为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.
3、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.
(1)如图1,CDOB,CD=OA,连接AD,BD.
① ;
②若OA=2,OB=3,则BD= ;
(2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
(3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
4、如图,在中,点D、E分别是边的中点,过点A作交的延长线于F点,连接,过点D作于点G.
(1)求证:四边形是平行四边形:
(2)若.
①当___________时,四边形是矩形;
②若四边形是菱形,则________.
5、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.
(1)若,则点,,的坐标分别是( ),( ),( );
(2)若△是以为底的等腰三角形,
①直接写出的值;
②若直线与△有公共点,求的取值范围.
(3)若直线与△有公共点,求的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
因为R不动,所以AR不变.根据中位线定理,EF不变.
【详解】
解:连接AR.
因为E、F分别是AP、RP的中点,
则EF为的中位线,
所以,为定值.
所以线段的长不改变.
故选:C.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
2、C
【解析】
【分析】
根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长
【详解】
解:如图,设的交点为,
四边形是正方形
,,
,,
,,
在与中
在中,
故选C
【点睛】
本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.
3、C
【解析】
【分析】
首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.
【详解】
解:由题意可知:n边形每个外角的度数是:180°-156°=24°,
则n=360°÷24°=15.
故选:C.
【点睛】
本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.
4、D
【解析】
【分析】
正确的命题是真命题,根据定义解答.
【详解】
解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
B. 满足的三个正整数,,是勾股数,故该项不符合题意;
C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
D. 五边形的内角和为,故该项符合题意;
故选:D.
【点睛】
此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
5、C
【解析】
【分析】
根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,AB=CD,AD=BC,
∵OE⊥AC,
∴OE是线段AC的垂直平分线,
∴AE=CE,
∵△CDE的周长为8,
∴CE+DE+CD=8,即AD+CD =8,
∴平行四边形ABCD的周长为2(AD+CD)=16.
故选:C.
【点睛】
本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.
6、D
【解析】
【分析】
由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
【详解】
解:∵四边形ABCD是正方形,
∴AB∥CD,∠A=90°,
∴∠EFD=∠BEF=60°,
∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
∴∠BEF=∠FEB'=60°,BE=B'E,
∴∠AEB'=180°-∠BEF-∠FEB'=60°,
∴B'E=2AE,
设BE=x,则B'E=x,AE=3-x,
∴2(3-x)=x,
解得x=2.
故选:D.
【点睛】
本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
7、D
【解析】
【分析】
根据平行四边形的性质解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,故A正确;
∴,故B正确;
∴AD=BC,故C正确;
故选:D.
【点睛】
此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
8、B
【解析】
【分析】
由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.
【详解】
解:,
,
在和中,
,
,
,(故①正确);
于点,于点,
,
,
四边形是平行四边形,
,(故②正确);
,
,
,
,
四边形是平行四边形,(故③正确);
由以上可得出:,,,
,,,等.(故④错误),
故正确的有3个,
故选:.
【点评】
此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.
9、B
【解析】
【分析】
根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.
【详解】
如图所示,
∵△ABC是直角三角形,
∴根据勾股定理:,故①正确;
由图可知,故②正确;
由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,
列出等式为,
即,故③正确;
由可得,
又∵,
两式相加得:,
整理得:,
,故④错误;
故正确的是①②③.
故答案选B.
【点睛】
本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.
10、A
【解析】
【分析】
根据矩形的判定方法解题.
【详解】
解:A、三个角都是直角的四边形是矩形,
选项A符合题意;
B、对角线互相平分的四边形是平行四边形,
选项B不符合题意,
C、两组对边分别相等的四边形是平行四边形,
选项C不符合题意;
D、一组对角是直角的四边形不是矩形,
选项D不符合题意;
故选:A.
【点睛】
本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.
二、填空题
1、5cm
【解析】
略
2、
【解析】
【分析】
根据矩形的性质得,,,根据BE是的角平分线,得,则,,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分则,等量代换得,所以,,即可得.
【详解】
解:∵四边形ABCD为矩形,
∴,,,
∵,BE是的角平分线,
∴,
∴,
在中,根据勾股定理得,
,
∵,
∴,
∵EC平分,
∴,
∴,
∴,
∴,
∴,
故答案为:.
【点睛】
本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.
3、
【解析】
【分析】
根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.
【详解】
如图,∵将纸片沿AE折叠,使点B落在点F处,
∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,
∵AD∥BC,
∴∠DAE=∠AED,
∴∠DAE=∠AED,
∴AD=DE=4,
在Rt△ADF中,由勾股定理得:,
∴EF=DE-DF=,
∴BE=EF=,
故答案为:.
【点睛】
本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.
4、4
【解析】
【分析】
由勾股定理求出F,得到D,过点作H⊥AB于H,连接BF,则四边形是矩形,求出HE,过点F作FG⊥AB于G,则四边形BCFG是矩形,利用勾股定理求出的长.
【详解】
解:在长方形中,,,
由折叠得5,
∴,
∴13=2,
过点作H⊥AB于H,连接BF,则四边形是矩形,
∴AH=D=2,
∵∠EF=∠BEF,∠FE=∠BEF,
∴∠EF=∠FE,
∴E=F=13,
∴=5,
过点F作FG⊥AB于G,则四边形BCFG是矩形,
∴BG=FC=5,
∴EG=13-5=8,
∴=4
故答案为4.
【点睛】
此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.
5、 中位线 3
【解析】
略
三、解答题
1、(1)见解析;(2)①不成立,结论:;②,见解析;(3)
【解析】
【分析】
(1)证明,可得出,则结论得证;
(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
(3)求出,设,则,,在中,得出关于的方程,解出则可得解.
【详解】
(1)证明:把绕点顺时针旋转至,如图1,
,,,
,
,,三点共线,
,
,
,
,
,
,
,
;
(2)①不成立,结论:;
证明:如图2,将绕点顺时针旋转至,
,,,,
,
,
,
;
②如图3,将绕点逆时针旋转至,
,,
,
,
,
,
,
,
.
即.
故答案为:.
(3)解:由(1)可知,
正方形的边长为6,
,
.
,
,
设,则,,
在中,
,
,
解得:.
,
.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
2、 (1)B(2,0),P(2,3)
(2)(2,3)或(,)
(3)(0,5)或(0,-1)或(4,1)
【解析】
【分析】
(1)设B(x,0),则P(x,x+2),由S△ABC=6列方程求出x的值,即得到点B和点P的坐标;
(2)当点D与点P重合时,△ABD是直角三角形;当点D与点P不重合时,过点C作CE⊥AP,先求出直线CE的解析式,再由直线BD∥CE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;
(3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.
(1)
解:如图1,设B(x,0),则P(x,x+2),
对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,
∴A(-4,0),C(0,2),
∵点P在第一象限,且S△ABC=6,
∴×2(x+4)=6,
解得x=2,
∴B(2,0),P(2,3).
(2)
如图1,点D与点P重合,此时∠ABD=∠ABP=90°,
∴△ABD是直角三角形,
此时D(2,3);
如图2,点D在线段AP上,∠ADB=90°,
此时△ABD是直角三角形,作CE⊥AP,交x轴于点E,
则∠ACE=∠ADB=90°,
∴BD∥CE,AC=,
设E(m,0),
由AE•OC=AC•CE=S△ACE,得AE•OC=AC•CE,
∴2(m+4)=CE,
∴CE=(m+4),
∵∠COE=90°,
∴OE2+OC2=CE2,
∴m2+22=(m+4)]2,
整理得,m2-2m+1=0,
解得,m1=m2=1,
∴E(1,0);
设直线CE的解析式为y=kx+2,则k+2=0,
解得,k=-2,
∴y=-2x+2;
设直线BD的解析式为y=-2x+n,则-2×2+n=0,
解得,n=4,
∴y=-2x+4,
由,得:,
∴D(,);
由图象可知,当点D在PA的延长线上,或点D在AP的延长线上,则△ABD不能是直角三角形,
综上所述,点D的坐标是(2,3)或(,);
(3)
存在.如图,
当四边形CQBP是平行四边形时,
此时,CQ=PB=3,
∴Q(0,-1);
当四边形CQ1PB是平行四边形时,
此时,CQ1=PB=3,
∴Q1(0,5);
当四边形CPQ2B是平行四边形时,
此时,CP∥BQ2且CB∥PQ2,
∴Q2(4,1);
综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).
【点睛】
此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.
3、 (1)△DCA;
(2)∠ABO+∠OCE=45°,理由见解析
(3)
【解析】
【分析】
(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
(2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
(3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
(1)
解:①∵CD∥OB,
∴∠ACD=∠BOA=90°,
又∵OB=CA,OA=CD,
∴△AOB≌△DCA(SAS);
故答案为:△DCA;
②如图所示,过点D作DR⊥BO交BO延长线于R,
由①可知△AOB≌△DCA,
∴CD=OA=2,AC=OB=3,
∵OC⊥OB,DR⊥OB,CD∥OB,
∴DR=OC=OA+AC=5(平行线间距离相等),
同理可得OR=CD=3,
∴BR=OB+OR=5,
∴;
故答案为:;
(2)
解:∠ABO+∠OCE=45°,理由如下:
如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
在△AOB和△WCA中,
,
∴△AOB≌△WCA(SAS),
∴AB=AW,∠ABO=∠WAC,
∵∠AOB=90°,
∴∠ABO+∠BAO=90°,
∴∠BAO+∠WAC=90°,
∴∠BAW=90°,
又∵AB=AW,
∴∠ABW=∠AWB=45°,
∵BE⊥OC,CW⊥OC,
∴BE∥CW,
又∵BE=OA=CW,
∴四边形BECW是平行四边形,
∴BW∥CE,
∴∠WJC=∠BWA=45°,
∵∠WJC=∠WAC+∠JCA,
∴∠ABO+∠OCE=45°;
(3)
解:如图3-1所示,连接AF,
∴,
∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
∵E是OB的中点,BE=OA,
∴BE=OE=OA,
∴OB=AC=2OA,
∵△CFQ是等腰直角三角形,CF=QF,
∴∠CFQ=∠CFA=90°,
∴,
∴,
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
4、 (1)见解析;
(2)①3;②
【解析】
【分析】
(1)根据三角形中位线的性质得到DEAB,BD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;
(2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;
②根据菱形的性质得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面积法求出答案.
(1)
证明:∵点D、E分别是边BC、AC的中点,
∴DEAB,BD=CD,
∵,
∴四边形ABDF是平行四边形,
∴AF=BD=CD,
∴四边形是平行四边形;
(2)
解:①∵点D、E分别是边BC、AC的中点,
∴DE=AB,
∵四边形是平行四边形,
∴DF=2DE=AB=3,
∵四边形是矩形,
∴AC=DF=3,
故答案为:3;
②∵四边形是菱形,
∴DF⊥AC,
∵DEAB,
∴AB⊥AC,
∴AD=BC=2.5,
∴AE=EC=2,
∵
∴
∴,
故答案为:.
【点睛】
此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.
5、 (1)-3,3,1,3,-3,-1
(2)①-2;②
(3)或
【解析】
【分析】
(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
(1)
解:,,
,轴.
以为对角线时,
四边形是平行四边形,
,,
将向左平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
,,
将向右平移2个单位长度可得,即;
以为对角线时,
四边形是平行四边形,
对角线的中点与的中点重合,
的中点为,,
.
故答案为:,,;
(2)
解:①如图,若△是以为底的等腰三角形,
四边形,,是平行四边形,
,,,
、、在同一直线上,、、在同一直线上,,
是等腰三角形△的中位线,
,,
,,,
,
;
②由①得,
,.
当直线过点时,,解得:,
当直线过点时,,解得:,
的取值范围为;
(3)
解:如图,,,,
,.
连接、交于点,
四边形是平行四边形,
点、关于点对称,
,
直线与△有公共点,
当直线与△交于点,,解得:,
时,直线与△有公共点;
当直线与△交于点,,解得:,
时,直线与△有公共点;
综上,的取值范围为或.
【点睛】
本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
2021学年第二十二章 四边形综合与测试精品复习练习题: 这是一份2021学年第二十二章 四边形综合与测试精品复习练习题,共26页。试卷主要包含了已知锐角∠AOB,如图.,下列说法正确的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步训练题,共25页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习,共36页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。