2021学年第二十二章 四边形综合与测试精品复习练习题
展开
这是一份2021学年第二十二章 四边形综合与测试精品复习练习题,共26页。试卷主要包含了已知锐角∠AOB,如图.,下列说法正确的是等内容,欢迎下载使用。
八年级数学下册第二十二章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若n边形每个内角都为156°,那么n等于( )A.8 B.12 C.15 D.162、在中,若,则的度数是( )A. B. C. D.3、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )A.1 B. C. D.24、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中错误的是( )A.四边形OCPD是菱形 B.CP=2QCC.∠AOP=∠BOP D.CD⊥OP5、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:①;②;③四边形是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )A.4 B.3 C.2 D.16、下列说法正确的是( )A.只有正多边形的外角和为360°B.任意两边对应相等的两个直角三角形全等C.等腰三角形有两条对称轴D.如果两个三角形一模一样,那么它们形成了轴对称图形7、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )A.8 B.10 C.12 D.168、正方形具有而矩形不一定具有的性质是( )A.四个角相等 B.对角线互相垂直C.对角互补 D.对角线相等9、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形10、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )A.80° B.90° C.100° D.110°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AD为的高,,以AB为底边作等腰,,交AC于F,连ED,EC,有以下结论:①;②;③;④;其中正确的是___.2、如图, 在矩形中, 对角线,相交于点,若,,则的长为_____.3、正方形的边长与它的对角线的长度的比值为_____.4、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.5、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.三、解答题(5小题,每小题10分,共计50分)1、如图,直线,线段分别与直线、交于点、点,满足.(1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)(2)求证:四边形为菱形.(请补全下面的证明过程)证明:____①____垂直平分,∴____②________③____∴四边形是___④_____∴四边形是菱形(______⑤__________)(填推理的依据).2、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.3、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.(1)直接写出点的坐标____________________;(2)求、两点的坐标.4、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.(1)若∠BAE=50°,求∠DGF的度数;(2)求证:DF=DC.5、如图,平行四边形ABCD中,∠ADB=90°.(1)求作:AB的垂直平分线MN,交AB于点M,交BD延长线于点N(要求:尺规作图,保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,设直线MN交AD于E,且∠C=22.5°,求证:NE=AB. -参考答案-一、单选题1、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,则n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.2、B【解析】【分析】利用平行四边形的对角相等即可选择正确的选项.【详解】解:四边形是平行四边形,,,,故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.3、D【解析】【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.【详解】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°-∠BEF-∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3-x,∴2(3-x)=x,解得x=2.故选:D.【点睛】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.4、A【解析】【分析】根据作图信息可以判断出OP平分,由此可以逐一判断即可.【详解】解:由作图可知,平分∴OP垂直平分线段CD∴∠AOP=∠BOP,CD⊥OP故选项C,D正确;由作图可知, ∴是等边三角形,∴ ∵OP垂直平分线段CD∴ ∴CP=2QC故选项B正确,不符合题意;由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.5、B【解析】【分析】由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.【详解】解:,,在和中,,,,(故①正确);于点,于点,,,四边形是平行四边形,,(故②正确);,,,,四边形是平行四边形,(故③正确);由以上可得出:,,,,,,等.(故④错误),故正确的有3个,故选:.【点评】此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.6、B【解析】【分析】选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.【详解】解:A.所有多边形的外角和为,故本选项不合题意;B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;C.等腰三角形有1条对称轴,故本选项不合题意;D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;故选:B.【点睛】此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.7、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA′==16,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.8、B【解析】略9、A【解析】【分析】根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.【详解】解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;D、有三个角是直角的四边形是矩形,所以该选项不正确.故选:A.【点睛】本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.10、B【解析】【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠EBD=∠A′BE+∠DBC′=180°×=90°.故选B.【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.二、填空题1、①③【解析】【分析】只要证明,,是的中位线即可一一判断;【详解】解:如图延长交于,交于.设交于.,,,,,,故①正确,,,,,,不垂直,故②错误,,,,,,,是等腰直角三角形,平分,,,,,,故③正确,,,,,,故④正确.故答案是:①③.【点睛】本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.2、8【解析】【分析】由四边形为矩形,根据矩形的对角线互相平分且相等,可得,由,根据有一个角为的等腰三角形为等边三角形可得三角形为等边三角形,根据等边三角形的每一个角都相等都为可得出为,在直角三角形中,根据直角三角形的两个锐角互余可得为,根据角所对的直角边等于斜边的一半,由的长可得出的长.【详解】解:四边形为矩形,,,且,,,又,为等边三角形,,在直角三角形中,,,,,则.故答案为:8.【点睛】此题考查了矩形的性质,等边三角形的判定与性质,以及含角直角三角形的性质,熟练掌握矩形的性质是解觉本题的关键.3、##【解析】【分析】由正方形的性质得出,,,由勾股定理求出,即可得出正方形的边长与对角线长的比值.【详解】解:四边形是正方形,,,,,;故答案为:.【点睛】本题考查了正方形的性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.4、【解析】【分析】根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.【详解】如图,∵将纸片沿AE折叠,使点B落在点F处,∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,∵AD∥BC,∴∠DAE=∠AED,∴∠DAE=∠AED,∴AD=DE=4,在Rt△ADF中,由勾股定理得:,∴EF=DE-DF=,∴BE=EF=,故答案为:.【点睛】本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.5、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∴=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.三、解答题1、 (1)见解析(2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;(2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).(1)解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;如图所示(2)证明:,∠2①,垂直平分 ,,,∴②△EOC,OF③,,,,∴四边形是平行四边形④,,∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.2、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.3、 (1)(10,8)(2)D(0,5),E(4,8)【解析】【分析】(1)根据,,可得点的坐标;(2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;(1)解:∵,,∴点的坐标(10,8),故答案为:(10,8);(2)解:依题意可知,折痕AD是四边形OAED的对称轴,在Rt△ABE中,AE=AO=10,AB=OC=8,由勾股定理,得BE= =6,CE=BC-BE=10-6=4,E(4,8).在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,又∵DE=OD,CD=8-OD,(8-OD)2+42=OD2,解得OD=5,D(0,5).所以D(0,5),E(4,8);【点睛】本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.4、 (1)∠DGF=25°;(2)见解析【解析】【分析】(1)由旋转的性质得出AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.(1)解:由旋转得AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,∴∠BAE=∠DAG=50°,∴∠AGD=∠ADG==65°,∴∠DGF=90°-65°=25°;(2)证明:连接AF,由旋转得矩形AEFG≌矩形△ABCD,∴AF=BD,∠FAE=∠ABE=∠AEB,∴AF∥BD,∴四边形ABDF是平行四边形,∴DF=AB=DC.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.5、 (1)见解析(2)见解析【解析】【分析】(1)根据题意作AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)连接,根据平行四边形的性质求得,进而根据垂直平分线的性质以及导角可求得 是等腰直角三角形,进而证明即可得证NE=AB.(1)如图,AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)如图,连接四边形是平行四边形,,则是的垂直平分线又在与中,【点睛】本题考查了作垂直平分线,平行四边形的性质,垂直平分线的性质,等边对等角,三角形全等的性质与判定,掌握以上知识是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习,共36页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题,共28页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习,共30页。试卷主要包含了下列说法正确的是,如图,菱形的对角线等内容,欢迎下载使用。