![2022年精品解析冀教版八年级数学下册第二十二章四边形专项练习练习题01](http://img-preview.51jiaoxi.com/2/3/12735370/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版八年级数学下册第二十二章四边形专项练习练习题02](http://img-preview.51jiaoxi.com/2/3/12735370/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版八年级数学下册第二十二章四边形专项练习练习题03](http://img-preview.51jiaoxi.com/2/3/12735370/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十二章 四边形综合与测试优秀课时训练
展开八年级数学下册第二十二章四边形专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于( )
A.1 B.2 C.3 D.4
2、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )
A.菱形 B.矩形 C.直角梯形 D.等腰梯形
3、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )
A.3 B.6 C. D.
4、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )
A.2 B. C. D.
5、六边形对角线的条数共有( )
A.9 B.18 C.27 D.54
6、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是( )
A.1个 B.2个 C.3个 D.4个
7、正方形具有而矩形不一定具有的性质是( )
A.四个角相等 B.对角线互相垂直
C.对角互补 D.对角线相等
8、一个多边形的每个内角均为150°,则这个多边形是( )
A.九边形 B.十边形 C.十一边形 D.十二边形
9、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )
A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
10、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
A.∠D=90° B.AB=CD C.AD=BC D.BC=CD
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.
2、如图,点M,N分别是的边AB,AC的中点,若,,则______.
3、如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,AC的中点,已知DF=5,则AE=_____.
4、如图所示,是长方形地面,长,宽,中间竖有一堵砖墙高.一只蚂蚱从点爬到点,它必须翻过中间那堵墙,则它至少要走______的路程.
5、如图,菱形中,,,点在边上,且,动点在边上,连接,将线段绕点顺时针旋转至线段,连接,则线段长的最小值为__.
三、解答题(5小题,每小题10分,共计50分)
1、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算AC2+BC2的值等于_____;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
2、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.
①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
①方法1:一路往下数,不回头数.
以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
以OAn-1为边的锐角有∠An-1OAn,共有1个;
则图中锐角的总个数是 ;
②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
用两种不同的方法数锐角个数,可以得到等式 .
(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
①计算:19782+20222;
②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
3、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.
(1)请证明“射影定理”中的结论③.
(2)【结论运用】如图2,正方形的边长为6,点O是对角线、的交点,点E在上,过点C作,垂足为F,连接.
①求证:.
②若,求的长.
4、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.
(1)求证:AE=CE;
(2)猜想线段AE,EG和GF之间的数量关系,并证明.
5、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
(1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
(2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
(3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.
【详解】
解:∵四边形ABCD为平行四边形,
∴,
∴,
∵AE平分,
∴,
∴,
∴,
∵,
∴,
故选:B.
【点睛】
题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.
2、B
【解析】
【分析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可.
【详解】
解:∵E是AC中点,
∴AE=EC,
∵DE=EF,
∴四边形ADCF是平行四边形,
∵AD=DB,AE=EC,
∴DE=BC,
∴DF=BC,
∵CA=CB,
∴AC=DF,
∴四边形ADCF是矩形;
故选:B.
【点睛】
本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.
3、B
【解析】
【分析】
连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.
【详解】
解:连接,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,
∵点是AC的中点, ∴,
∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,
∴
∴,
∴是等边三角形,
∴∠BAA'=60°,
∴∠ACB=30°,
∵AB=3, ∴AC=2AB=6,
∴.
即点B与点之间的距离为6.
故选:B.
【点睛】
本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.
4、B
【解析】
【分析】
先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
【详解】
解:∵四边形ABCD是正方形,
∴△ABD和△BCD是等腰直角三角形,
如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,
由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
∴重叠部分的四边形D'EBF为平行四边形,
设DD'=x,则D'C=6-x,D'E=x,
∴S▱D'EBF=D'E•D'C=(6-x)x=4,
解得:x=3+或x=3-,
故选:B.
【点睛】
本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
5、A
【解析】
【分析】
n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.
【详解】
解:六边形的对角线的条数= =9.
故选:A.
【点睛】
本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).
6、A
【解析】
【分析】
利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.
【详解】
解:∵AB=3,AC=4,32+42=52,
∴AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴AB⊥AC,故①正确;
∵△ABD,△ACE都是等边三角形,
∴∠DAB=∠EAC=60°,
∴∠DAE=150°,
∵△ABD和△FBC都是等边三角形,
∴BD=BA,BF=BC,
∴∠DBF=∠ABC,
在△ABC与△DBF中,
,
∴△ABC≌△DBF(SAS),
∴AC=DF=AE=4,
同理可证:△ABC≌△EFC(SAS),
∴AB=EF=AD=3,
∴四边形AEFD是平行四边形,故②正确;
∴∠DFE=∠DAE=150°,故③正确;
过A作AG⊥DF于G,如图所示:
则∠AGD=90°,
∵四边形AEFD是平行四边形,
∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,
∴AG=AD=,
∴S▱AEFD=DF•AG=4×=6;故④错误;
∴错误的个数是1个,
故选:A.
.
【点睛】
此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.
7、B
【解析】
略
8、D
【解析】
【分析】
先求出多边形的外角度数,然后即可求出边数.
【详解】
解:∵多边形的每个内角都等于150°,
∴多边形的每个外角都等于180°-150°=30°,
∴边数n=360°÷30°=12,
故选:D.
【点睛】
本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.
9、D
【解析】
【分析】
根据平行四边形的性质解答.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,故A正确;
∴,故B正确;
∴AD=BC,故C正确;
故选:D.
【点睛】
此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
10、D
【解析】
略
二、填空题
1、6
【解析】
【分析】
利用多边形的外角和以及多边形的内角和定理即可解决问题.
【详解】
解:多边形的外角和是360度,多边形的内角和是外角和的2倍,
则内角和是720度,
,
这个多边形的边数为6.
故答案为:6.
【点睛】
本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.
2、45°##45度
【解析】
【分析】
根据三角形中位线定理得出,进而利用平行线的性质解答即可.
【详解】
解:、分别是的边、的中点,
,
,
,,
,
,
故答案是:.
【点睛】
本题考查三角形中位线定理,解题的关键是根据三角形中位线定理得出.
3、5
【解析】
【分析】
依题意,可得DF是△ABC的中位线,得到BC的边长;又结合直角三角形斜边中线是斜边的一半,即可求解;
【详解】
∵ D,F分别为AB,AC的中点,
∴DF是△ABC的中位线,
∴BC=2DF=10,
在Rt△ABC中,E为BC的中点,
故答案为:5.
【点睛】
本题主要考查直角三角形性质及中线的性质,关键在熟练综合使用和分析;
4、
【解析】
【分析】
根据题意,将长方形底面和中间墙展开为平面图,并连接BD,根据两点之间直线段最短和勾股定理的性质计算,即可得到答案.
【详解】
将长方形底面和中间墙展开后的平面图如下,并连接BD
根据题意,展开平面图中的
∴一只蚂蚱从点爬到点,最短路径长度为展开平面图中BD长度
∵是长方形地面
∴
∴
故答案为:.
【点睛】
本题考查了立体图形展开图、矩形、两点之间直线段最短、勾股定理的知识;解题的关键是熟练掌握立体图形展开图、勾股定理的知识,从而完成求解.
5、
【解析】
【分析】
在上取一点,使得,连接,,作直线交于,过点作于.证明,推出点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,求出即可.
【详解】
解:在上取一点,使得,连接,,作直线交于,过点作于.
,,
是等边三角形,
,,
,,
是等边三角形,
,,
,
,
在和中,
,
,
,
,
点在射线上运动,
根据垂线段最短可知,当点与重合时,的值最小,
,,
,,
,
∴GT//AB
∵BG//AT
四边形是平行四边形,
,,
∴
在中,
∴
,
的最小值为,
故答案为:.
【点睛】
本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
三、解答题
1、 11 见解析
【解析】
【分析】
(1)直接利用勾股定理求出即可;
(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
【详解】
解:(1)AC2+BC2=()2+32=11;
故答案为:11;
(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
【点睛】
本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
2、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
【解析】
【分析】
(1)①根据边长为(a+b)的正方形面积公式求解即可;
②利用矩形和正方形的面积公式求解即可;
(2)①根据题中的数据求和即可;
②根据题意求解即可;
(3)①利用(1)的规律求解即可;
②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
【详解】
解:(1)①大正方形的面积为;
②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
可以得到等式:=;
故答案为:①;②;=;
(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
②锐角的总个数是n(n-1);
可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
(3)①19782+20222=[2000+(-22)]2+(2000+22)2
=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
=2×(20002+222)
=2×[4000000+(20+2)2]
=2×[4000000+(202+22+2×20×2)]=8000968;
②一个四边形共有2条对角线,即×4×(4-3)=2;
一个五边形共有5条对角线,即×5×(5-3)=5;
一个六边形共有9条对角线,即×6×(6-3)=9;
……,
一个十七边形共有×17×(17-3)=119条对角线;
一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
故答案为:119,n(n-3).
【点睛】
本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
3、 (1)见解析;
(2)①见解析;②.
【解析】
【分析】
(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;
(2)①由“射影定理”分别解得,,整理出,再结合即可证明;
②由勾股定理解得,再根据得到,代入数值解题即可.
(1)
证明:
(2)
①四边形ABCD是正方形
②在中,
在,
.
【点睛】
本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.
4、 (1)见解析
(2)AE2+ GF2=EG2,证明见解析
【解析】
【分析】
(1)根据“SAS”证明△ADE≌△CDE即可;
(2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.
(1)
证明:∵四边形ABCD是正方形,
∴AD=CD,∠ADE=∠CDE,
在△ADE和△CDE中
,
∴△ADE≌△CDE,
∴AE=CE;
(2)
AE2+ GF2=EG2,理由:
连接CG
∵△ADE≌△CDE,
∴∠1=∠2.
∵G为FH的中点,
∴CG=GF=GH=FH,
∴∠6=∠7.
∵∠5=∠6,
∴∠5=∠7.
∵∠1+∠5=90°,
∴∠2+∠7=90°,即∠ECG=90°,
在Rt△CEG中,CE2+CG2=EG2,
∴AE2+ GF2=EG2.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.
5、 (1)=
(2)∠P=90°-∠A
(3)∠P=180°-∠BAD-∠CDA,探究见解析
【解析】
【分析】
(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
(2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
(3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
(1)
∠DBC+∠ECB-∠A=180°,
理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
∴∠DBC+∠ECB-∠A=180°,
故答案为:=;
(2)
∠P=90°-∠A,
理由是:∵BP平分∠DBC,CP平分∠ECB,
∴∠CBP=∠DBC,∠BCP=∠ECB,
∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
∵∠DBC+∠ECB=180°+∠A,
∴∠P=180°-(180°+∠A)=90°-∠A.
故答案为:∠P=90°-∠A,
(3)
∠P=180°-∠BAD-∠CDA,
理由是:如图,
∵∠EBC=180°-∠1,∠FCB=180°-∠2,
∵BP平分∠EBC,CP平分∠FCB,
∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
∴∠3+∠4=180°-(∠1+∠2),
∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
【点睛】
本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
初中冀教版第二十二章 四边形综合与测试精品习题: 这是一份初中冀教版第二十二章 四边形综合与测试精品习题,共28页。
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题,共21页。
2020-2021学年第二十二章 四边形综合与测试优秀课后作业题: 这是一份2020-2021学年第二十二章 四边形综合与测试优秀课后作业题,共33页。