搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析冀教版八年级数学下册第二十二章四边形定向练习试题(名师精选)

    2022年必考点解析冀教版八年级数学下册第二十二章四边形定向练习试题(名师精选)第1页
    2022年必考点解析冀教版八年级数学下册第二十二章四边形定向练习试题(名师精选)第2页
    2022年必考点解析冀教版八年级数学下册第二十二章四边形定向练习试题(名师精选)第3页
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第二十二章 四边形综合与测试优秀课后测评

    展开

    这是一份初中冀教版第二十二章 四边形综合与测试优秀课后测评,共25页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为( )
    A.B.8C.D.
    2、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
    A.1B.C.D.2
    3、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )
    A.8B.10C.16D.20
    4、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( )
    A.20B.40C.60D.80
    5、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是( )
    A.1∶2∶3∶4B.1∶2∶2∶1C.2∶2∶1∶1D.1∶2∶1∶2
    6、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )
    A.5B.6C.7D.8
    7、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )
    A.80°B.90°C.100°D.110°
    8、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为( )
    A.22.5°B.27.5°C.30°D.35°
    9、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 ( )
    A.5B.6C.8D.10
    10、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
    A.∠D=90°B.AB=CDC.AD=BCD.BC=CD
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一个多边形的每个内角都等于120°,则这个多边形的边数是______.
    2、如图,在矩形ABCD中,DE⊥CE,AE<BE,AD=4,AB=10,则DE长为________.
    3、若一个正多边形的内角和与外角和的度数相等,则此正多边形对称轴条数为______.
    4、如图,在矩形中,,点在边上,联结.如果将沿直线翻折,点恰好落在线段上,那么 的值为_________.
    5、添加一个条件,使矩形ABCD是正方形,这个条件可能是 _____.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形
    2、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点
    (1)求证:四边形BDEG是平行四边形;
    (2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.
    3、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.
    (1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
    (2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
    (3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
    4、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.
    5、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.
    ①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
    ②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
    (2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
    ①方法1:一路往下数,不回头数.
    以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
    以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
    以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
    以OAn-1为边的锐角有∠An-1OAn,共有1个;
    则图中锐角的总个数是 ;
    ②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
    用两种不同的方法数锐角个数,可以得到等式 .
    (3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
    ①计算:19782+20222;
    ②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.
    【详解】
    解:连接OE,
    ∵四边形ABCD是菱形,
    ∴OA=OC=5,OB=OD=12,AC⊥BD,
    在Rt△AOD中,AD==13,
    又∵E是边AD的中点,
    ∴OE=AD=×13=6.5,
    ∵EF⊥BD,EG⊥AC,AC⊥BD,
    ∴∠EFO=90°,∠EGO=90°,∠GOF=90°,
    ∴四边形EFOG为矩形,
    ∴FG=OE=6.5.
    故选:A.
    【点睛】
    本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.
    2、D
    【解析】
    【分析】
    由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB∥CD,∠A=90°,
    ∴∠EFD=∠BEF=60°,
    ∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
    ∴∠BEF=∠FEB'=60°,BE=B'E,
    ∴∠AEB'=180°-∠BEF-∠FEB'=60°,
    ∴B'E=2AE,
    设BE=x,则B'E=x,AE=3-x,
    ∴2(3-x)=x,
    解得x=2.
    故选:D.
    【点睛】
    本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
    3、C
    【解析】
    【分析】
    根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,AB=CD,AD=BC,
    ∵OE⊥AC,
    ∴OE是线段AC的垂直平分线,
    ∴AE=CE,
    ∵△CDE的周长为8,
    ∴CE+DE+CD=8,即AD+CD =8,
    ∴平行四边形ABCD的周长为2(AD+CD)=16.
    故选:C.
    【点睛】
    本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.
    4、B
    【解析】
    【分析】
    根据菱形的面积公式求解即可.
    【详解】
    解:这个菱形的面积=×10×8=40.
    故选:B.
    【点睛】
    本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.
    5、D
    【解析】

    6、C
    【解析】
    【分析】
    根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.
    【详解】
    解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,
    而题目中从一个顶点引出4条对角线,
    ∴n-3=4,得到n=7,
    ∴这个多边形的边数是7.
    故选:C.
    【点睛】
    本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.
    7、B
    【解析】
    【分析】
    根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.
    【详解】
    解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,
    又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,
    ∴∠EBD=∠A′BE+∠DBC′=180°×=90°.
    故选B.
    【点睛】
    此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
    8、A
    【解析】
    【分析】
    利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴BC=AD,∠DBC=45°,
    ∵BE=AD,
    ∴BE=BC,
    ∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,
    ∵AC⊥BD,
    ∴∠COE=90°,
    ∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,
    故选:A.
    【点睛】
    本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.
    9、A
    【解析】
    【分析】
    先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
    【详解】
    解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,
    ∴每个外角是:180°−108°=72°,
    ∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.
    故选:A.
    【点睛】
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.
    10、D
    【解析】

    二、填空题
    1、6
    【解析】
    【分析】
    先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.
    【详解】
    ∵多边形的每一个内角都等于120°,
    ∴多边形的每一个外角都等于180°-120°=60°,
    ∴边数n=360°÷60°=6.
    故答案为:6.
    【点睛】
    此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
    2、
    【解析】
    【分析】
    设AE=x,则BE=10﹣x,由勾股定理得AD2+AE2=DE2,BC2+BE2=CE2,DE2+CE2=CD2,则AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(舍去),则AE=2,然后由勾股定理即可求解.
    【详解】
    解:设AE=x,则BE=10﹣x,
    ∵四边形ABCD是矩形,
    ∴CD=AB=10,∠A=∠B=90°,
    ∴AD2+AE2=DE2,BC2+BE2=CE2,
    ∵DE⊥CE,
    ∴∠DEC=90°,
    ∴DE2+CE2=CD2,
    ∴AD2+AE2+BC2+BE2=CD2,
    即42+x2+42+(10﹣x)2=102,
    解得:x=2或x=8(不合题意,舍去),
    ∴AE=2,
    ∴DE===2,
    故答案为:2.
    【点睛】
    本题考查了矩形的性质,勾股定理,掌握勾股定理是解题的关键.
    3、4
    【解析】
    【分析】
    利用多边形的内角和与外角和公式列出方程,求得多边形的边,再利用正多边形的性质可得答案.
    【详解】
    解:设多边形的边数为n,
    根据题意(n-2)•180°=360°,
    解得n=4.
    所以正多边形为正方形,
    所以这个正多边形有4条对称轴,
    故答案为:4.
    【点睛】
    本题考查了多边形的内角和公式与多边形的外角和定理,解一元一次方程,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°,也考查的正多边形的对称轴的条数.
    4、
    【解析】
    【分析】
    先根据翻折的性质得出AD′=AD=5,DP=PD′,,然后在Rt△ABF中由勾股定理求出BD′=4,D′C=1,设DP=x,则D′P=x,PC=3-x,在RtCD′P中,由勾股定理求出列方程求出x即可,然后利用三角形的面积公式求出S△ADP和的面积即可.
    【详解】
    解:∵AB=3,BC=5,
    ∴DC=3,AD=5,
    又∵将△ADP折叠使点D恰好落在BC边上的点D′,
    ∴AD′=AD=5,DP=PD′,
    在Rt△ABD′中,AB=3,AD′=5,
    ∴BD′==4,
    ∴D′C=5-4=1,
    设DP=x,则D′P=x,PC=3-x,
    在Rt△CD′P中,D′P2=D′C2+PC2,即x2=12+(3-x)2,解得x=,
    即DP的长为,
    ∵AD=5,
    ∴S△ADP=×DP×AD=××5=,=3×5-=,
    ∴=,
    故答案为:.
    【点睛】
    本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,也考查了矩形的性质以及勾股定理.
    5、或或或或
    【解析】
    【分析】
    根据有一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形即可得出答案.
    【详解】
    解:根据有一组邻边相等的矩形是正方形得:这个条件可能是或或或,
    根据对角线互相垂直的矩形是正方形得:这个条件可能是,
    故答案为:或或或或.
    【点睛】
    本题考查了正方形的判定,熟练掌握正方形与矩形之间的关系是解题关键.
    三、解答题
    1、证明见解析
    【解析】
    【分析】
    平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.
    【详解】
    证明:∵四边形 是平行四边形




    ∴四边形为平行四边形
    又∵
    ∴四边形是矩形.
    【点睛】
    本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.
    2、 (1)证明见解析
    (2)10
    【解析】
    【分析】
    (1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;
    (2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.
    (1)
    证明:∵AC平分∠BAD,AB∥CD,
    ∴∠DAC=∠BAC,∠DCA=∠BAC,
    ∴∠DAC=∠DCA,
    ∴AD=DC,
    又∵AB∥CD,AB=AD,
    ∴AB∥CD且AB=CD,
    ∴四边形ABCD是平行四边形,
    ∵AB=AD,
    ∴四边形ABCD是菱形.
    (2)
    解:连接BD,交AC于点O,如图:
    ∵菱形ABCD的边长为13,对角线AC=24,
    ∴CD=13,AO=CO=12,
    ∵点E、F分别是边CD、BC的中点,
    ∴EF∥BD(中位线),
    ∵AC、BD是菱形的对角线,
    ∴AC⊥BD,OB=OD,
    又∵AB∥CD,EF∥BD,
    ∴DE∥BG,BD∥EG,
    ∵四边形BDEG是平行四边形,
    ∴BD=EG,
    在△COD中,
    ∵OC⊥OD,CD=13,CO=12,
    ∴,
    ∴EG=BD=10.
    【点睛】
    本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.
    3、 (1)①见解析;②见解析
    (2)是,见解析
    (3)
    【解析】
    【分析】
    (1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
    ②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
    (2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
    (3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
    (1)
    证明:①∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    在△ABD与△EDC中,

    ∴△ABD≌△EDC(ASA),
    即△ABM≌△EMC;
    ②由①得△ABD≌△EDC,
    ∴AB=ED,
    ∵AB∥ED,
    ∴四边形ABDE是平行四边形;
    (2)
    成立.理由如下:
    如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
    ∵AD∥EC,ML∥DC,
    ∴四边形MDCL为平行四边形,
    ∴ML=DC=BD,
    ∵ML∥DC,
    ∴∠FML=∠MBD,
    ∵AD∥EC,
    ∴∠BMD=∠MFL,∠AMB=∠EFM,
    在△BMD和△MFL中
    ∠MBD=∠FML∠BMD=∠MFLBD=ML,
    ∴△BMD≌△MFL(AAS),
    ∴BM=MF ,
    ∵AB∥ME,
    ∴∠ABM=∠EMF,
    在△ABM和△EMF中,
    ∴△ABM≌△EMF(ASA),
    ∴AB=EM,
    ∵AB∥EM,
    ∴四边形ABME是平行四边形;
    (3)
    解:过点D作DG∥BN交AC于点G,
    ∵M为AD的中点,DG∥MN,
    ∴MN=DG,
    ∵D为BC的中点,
    ∴DG=BN,
    ∴MN=BN,
    ∴,
    由(2)知四边形ABME为平行四边形,
    ∴BM=AE,
    ∴.
    【点睛】
    本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
    4、
    【解析】
    【分析】
    连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.
    【详解】
    解:连接AC、CF,如图,
    ∵四边形ABCD和四边形CEFG都是正方形,
    ∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,
    ∴∠ACF=45°+45°=90°,
    在Rt△ACF中,
    ∵T为AF的中点,
    ∴,
    ∴CT的长为.
    【点睛】
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.
    5、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
    【解析】
    【分析】
    (1)①根据边长为(a+b)的正方形面积公式求解即可;
    ②利用矩形和正方形的面积公式求解即可;
    (2)①根据题中的数据求和即可;
    ②根据题意求解即可;
    (3)①利用(1)的规律求解即可;
    ②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
    【详解】
    解:(1)①大正方形的面积为;
    ②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
    可以得到等式:=;
    故答案为:①;②;=;
    (2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
    ②锐角的总个数是n(n-1);
    可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
    故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
    (3)①19782+20222=[2000+(-22)]2+(2000+22)2
    =20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
    =2×(20002+222)
    =2×[4000000+(20+2)2]
    =2×[4000000+(202+22+2×20×2)]=8000968;
    ②一个四边形共有2条对角线,即×4×(4-3)=2;
    一个五边形共有5条对角线,即×5×(5-3)=5;
    一个六边形共有9条对角线,即×6×(6-3)=9;
    ……,
    一个十七边形共有×17×(17-3)=119条对角线;
    一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
    故答案为:119,n(n-3).
    【点睛】
    本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.

    相关试卷

    初中第二十二章 四边形综合与测试优秀课时训练:

    这是一份初中第二十二章 四边形综合与测试优秀课时训练,共31页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品随堂练习题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品随堂练习题,共28页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试优秀同步达标检测题:

    这是一份数学八年级下册第二十二章 四边形综合与测试优秀同步达标检测题,共30页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map