搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版八年级数学下册第二十二章四边形定向训练试题(名师精选)

    精品试卷冀教版八年级数学下册第二十二章四边形定向训练试题(名师精选)第1页
    精品试卷冀教版八年级数学下册第二十二章四边形定向训练试题(名师精选)第2页
    精品试卷冀教版八年级数学下册第二十二章四边形定向训练试题(名师精选)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀练习题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀练习题,共27页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法不正确的是(  )A.矩形的对角线相等B.直角三角形斜边上的中线等于斜边的一半C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相垂直2、若n边形每个内角都为156°,那么n等于(       A.8 B.12 C.15 D.163、如图,菱形ABCD的对角线ACBD相交于点OEOB的中点,PCD的中点,连接PE,则线段PE的长为(       A. B. C. D.4、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则       A.8 B.10 C.12 D.145、如图,平行四边形ABCD的对角线ACBD相交于点O,下列结论错误的是(  )A.AOCO B.ADBC C.ADBC D.∠DAC=∠ACD6、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为ab,且a2b2ab+10,那么小正方形的面积为(       A.2 B.3 C.4 D.57、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是(   )A.3 B. C. D.68、下列关于的叙述,正确的是(       A.若,则是矩形 B.若,则是正方形C.若,则是菱形 D.若,则是正方形9、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为(       A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)10、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①ABAC;②四边形AEFD是平行四边形;③∠DFE=150°;④SAEFD=8.错误的个数是(  )A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为4,EBC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.2、五边形内角和为__________.3、如图,在菱形ABCD中,点MN分别交于ABCD上,AM=CNMNAC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.4、一个多边形的每个内角都等于120°,则这个多边形的边数是______.5、矩形的性质定理1:矩形的四个角都是________.符号语言:∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°.矩形的性质定理2:矩形的对角线________.符号语言:∵四边形ABCD是矩形,ACBD三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点DE分别是边的中点,过点A的延长线于F点,连接,过点D于点G(1)求证:四边形是平行四边形:(2)若①当___________时,四边形是矩形;②若四边形是菱形,则________.2、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,EF分别是边的中点.(1)若,求的长.小兰说:取的中点P,连接.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到的数量关系,你觉得小花说得对吗?若对,请你帮小花得到的数量关系,并说明理由.3、如图,在四边形ABCD中,ABAD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BDBC于点EF.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.4、已知:在平行四边形ABCD中,分别延长BADC到点EH,使得BE=2ABDH=2CD.连接EH,分别交ADBC于点FG(1)求证:AFCG(2)连接BDEH于点O,若EHBD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?5、如图,矩形ABCD的对角线ACBD相交于点OAB=5cm,∠BOC=120°,求矩形对角线的长. -参考答案-一、单选题1、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.2、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.3、A【解析】【分析】OD的中点H,连接HP,由菱形的性质可得ACBDAOCO4OBOD6,由三角形中位线定理可得,可得EH6,由勾股定理可求PE的长.【详解】解:如图,取OD的中点H,连接HP∵四边形ABCD是菱形ACBDAOCO4OBOD6∵点HOD中点,点EOB的中点,点PCD的中点OH=3OE=3EH6中,由勾股定理可得:故选:A【点睛】本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.4、C【解析】【分析】根据折叠和矩形的性质,可得∠DBE =∠CBDADBCAD=BCABAD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.【详解】解:根据题意得: ∠DBE =∠CBDADBCAD=BCABAD∴∠BDE=∠CBD∴∠BDE=∠DBEBE=DE的面积是22.5, ,解得: 中,由勾股定理得:   故选:C【点睛】本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.5、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,AOOC,故A正确;,故B正确; ADBC,故C正确;故选:D【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.6、A【解析】【分析】由正方形1性质和勾股定理得,再由,得,则,即可解决问题.【详解】解:设大正方形的边长为大正方形的面积是18,小正方形的面积故选:A.【点睛】本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出7、C【解析】【分析】画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在RtABC中,由勾股定理可求得BC的长.【详解】解:如下图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=ACOB=BDAC=BDOA=OB∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,OA=AB=2,AC=2OA=4,BC2=AC2-AB2=36-9=27,BC=故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.8、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项错误,正确;即可得出结论.【详解】解:中,四边形是矩形,选项符合题意;中,四边形是菱形,不一定是正方形,选项不符合题意;中,四边形是矩形,不一定是菱形,选项不符合题意;中,四边形是菱形,选项不符合题意;故选:【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.9、B【解析】【分析】分别过点和点轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标【详解】如图,分别过点和点轴于点,作轴于点∵四边形为菱形,∴点的中点,∴点的中点,由题意知菱形绕点逆时针旋转度数为:∴菱形绕点逆时针旋转周,∴点绕点逆时针旋转周,∴旋转60秒时点的坐标为故选B【点睛】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.10、A【解析】【分析】利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DFAE,同理可证:△ABC≌△EFC,得到EFAD,由此判断②;由②可判断③;过AAGDFG,求出AG即可求出 SAEFD,判断④.【详解】解:∵AB3AC432+4252AB2+AC2BC2∴△ABC是直角三角形,∠BAC90°,ABAC,故正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC60°,∴∠DAE150°,∵△ABD和△FBC都是等边三角形,BDBABFBC∴∠DBF=∠ABC在△ABC与△DBF中,∴△ABC≌△DBFSAS),ACDFAE4同理可证:△ABC≌△EFCSAS),ABEFAD3∴四边形AEFD是平行四边形,故正确;∴∠DFE=∠DAE150°,故正确;AAGDFG,如图所示:则∠AGD90°,∵四边形AEFD是平行四边形,∴∠FDA180°﹣∠DFE180°﹣150°=30°,AGADSAEFDDFAG4×6;故④错误;∴错误的个数是1个,故选:A【点睛】此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.二、填空题1、【解析】【分析】要求PE+PC的最小值,PEPC不能直接求,可考虑通过作辅助线转化PEPC的值,从而找出其最小值求解.【详解】解:如图,连接AEPA∵四边形ABCD是正方形,BD为对角线,∴点C关于BD的对称点为点APE+PC=PE+AP根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为4,EBC边的中点,BE=2,AE=故答案为:【点睛】本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.2、540°【解析】【分析】根据n边形的内角和公式(n-2)·180°求解即可.【详解】解:五边形内角和为(5-2)×180°=540°,故答案为:540°.【点睛】本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.3、28【解析】【分析】由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BOAC,即可求解.【详解】解:∵四边形ABCD是菱形,AB//CDAB=BCBC//AD∴∠MAO=∠NCO,∠BCA=∠CAD在△AOM和△CON中,∴△AOM≌△CONAAS),AO=CO又∵AB=BCBOAC∴∠BCO=90°﹣∠OBC=28°=∠DAC故答案为:28.【点睛】本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.4、6【解析】【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故答案为:6.【点睛】此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.5、     直角     相等【解析】三、解答题1、 (1)见解析;(2)①3;②【解析】【分析】(1)根据三角形中位线的性质得到DEABBD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;(2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;②根据菱形的性质得到DFAC,推出ABAC,利用勾股定理求出AC,得到CE,利用面积法求出答案.(1)证明:∵点D、E分别是边BC、AC的中点,DEABBD=CD∴四边形ABDF是平行四边形,AF=BD=CD∴四边形是平行四边形;(2)解:①∵点D、E分别是边BC、AC的中点,DE=AB∵四边形是平行四边形,DF=2DE=AB=3,∵四边形是矩形,AC=DF=3,故答案为:3;②∵四边形是菱形,DFACDEABABACAD=BC=2.5, AE=EC=2,故答案为:【点睛】此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.2、 (1)(2),理由见解析【解析】【分析】(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;(2)方法同(1).(1)解:如图,取的中点P,连接 PEF分别是边的中点, ,,中,(2),理由如下,如图,取的中点P,连接 PEF分别是边的中点,,,,中,【点睛】本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.3、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DFAD//BC∴∠ADE=∠EBFAF垂直平分BDBE=DE在△ADE和△FBE中,∴△ADE≌△FBEASA),AE=EFBDAF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.4、 (1)见解析(2)当AD=AB时,四边形BEDH是正方形【解析】【分析】(1)要证明AF=CG,只要证明△EAF≌△HCG即可;(2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.(1)证明:∵四边形ABCD是平行四边形,ABCDAB=CD,∠BAD=∠BCD∴∠AEF=∠CHGBE=2ABDH=2CDBE=DHBE-AB=DH-DCAE=CH∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH∴△EAF≌△HCG(ASA),AF=CG(2)解:当AD=AB时,四边形BEDH是正方形;理由:∵BEDHBE=DH∴四边形EBHD是平行四边形,EHBD∴四边形EBHD是菱形,ED=EB=2ABAE2+DE2=AD2时,则∠BED=90°,∴四边形BEDH是正方形,即AB2+(2AB)2=AD2AD=AB∴当AD=AB时,四边形BEDH是正方形.【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.5、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,ACBDOAOCACOBODBD,推出OAOB,求出等边三角形AOB,求出OAOBAB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,ACBDOAOCACOBODBDOAOB∵∠AOB=60°,∴△AOB是等边三角形,AB=5cm,OAOBAB=5cm,AC=2AO=10cmBDAC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OAOB的长,题目比较典型,是一道比较好的题目. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试习题,共27页。

    初中第二十二章 四边形综合与测试优秀课时训练:

    这是一份初中第二十二章 四边形综合与测试优秀课时训练,共31页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    2021学年第二十二章 四边形综合与测试优秀达标测试:

    这是一份2021学年第二十二章 四边形综合与测试优秀达标测试,共31页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map