搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版八年级数学下册第二十二章四边形章节测试试卷(含答案解析)

    精品试题冀教版八年级数学下册第二十二章四边形章节测试试卷(含答案解析)第1页
    精品试题冀教版八年级数学下册第二十二章四边形章节测试试卷(含答案解析)第2页
    精品试题冀教版八年级数学下册第二十二章四边形章节测试试卷(含答案解析)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第二十二章 四边形综合与测试精品综合训练题

    展开

    这是一份数学八年级下册第二十二章 四边形综合与测试精品综合训练题,共33页。
    八年级数学下册第二十二章四边形章节测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )

    A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)
    2、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为(  )
    A.120° B.60° C.30° D.15°
    3、如图,在中,DE平分,,则( )

    A.30° B.45° C.60° D.80°
    4、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有( )个.

    ①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.
    A.1 B.3 C.4 D.5
    5、如图,在平面直角坐标系中,直线分别交x轴,y轴于A、B两点,C为线段OB上一点,过点C作轴交l于点D,若的顶点E恰好落在直线上,则点C的坐标为( )

    A. B. C. D.
    6、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是(  )
    A.360° B.900° C.1440° D.1800°
    7、一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是( )
    A.5 B.4 C.7 D.6
    8、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.
    其中说法正确的是(   )

    A.②③ B.①②③ C.②④ D.①②④
    9、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:
    ①;
    ②;
    ③四边形是平行四边形;
    ④图中共有四对全等三角形.
    其中正确结论的个数是( )

    A.4 B.3 C.2 D.1
    10、如图,在中,,于点D,F在BC上且,连接AF,E为AF的中点,连接DE,则DE的长为( )

    A.1 B.2 C.3 D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,四边形ABCD是平行四边形,BE平分∠ABC,与AD交于点E,BC=5,DE=2,则AB的长为 ___.

    2、从八边形的一个顶点引出的对角线有_____条.
    3、如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m2.

    4、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.

    5、如图,在矩形ABCD中,DE⊥CE,AE<BE,AD=4,AB=10,则DE长为________.

    三、解答题(5小题,每小题10分,共计50分)
    1、若直线分别交轴、轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥轴,B为垂足,且S△ABC= 6

    (1)求点B和P的坐标;
    (2)点D是直线AP上一点,△ABD是直角三角形,求点D坐标;
    (3)请问坐标平面是否存在点Q,使得以Q、C、P、B为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.
    2、如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.

    (1)求证:四边形EFGH是平行四边形;
    (2)如果∠BDC=90°,∠DBC=30°,,AD=6,求四边形EFGH的周长.
    3、(1)【发现证明】
    如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.
    (2)【类比引申】
    ①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)
    ②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)
    (3)【联想拓展】如图1,若正方形的边长为6,,求的长.

    4、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.

    (1)求证:AE=CE;
    (2)猜想线段AE,EG和GF之间的数量关系,并证明.
    5、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标
    【详解】
    如图,分别过点和点作轴于点,作轴于点,

    ∴,
    ∵四边形为菱形,
    ∴点为的中点,
    ∴点为的中点,
    ∴,,
    ∵,
    ∴;
    由题意知菱形绕点逆时针旋转度数为:,
    ∴菱形绕点逆时针旋转周,
    ∴点绕点逆时针旋转周,
    ∵,
    ∴旋转60秒时点的坐标为.
    故选B
    【点睛】
    根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
    2、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,

    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    3、C
    【解析】
    【分析】
    根据平行四边形的性质得,故,由DE平分得,即可计算.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴,
    ∴,
    ∵DE平分,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.
    4、C
    【解析】
    【分析】
    证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.
    【详解】
    解:∵BH⊥AE,AF⊥BC,AE⊥EM,
    ∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,
    ∴∠NBF=∠EAF=∠MEC,
    在△NBF和△EAF中,,
    ∴△NBF≌△EAF(AAS);
    ∴BF=AF,NF=EF,
    ∴∠ABC=45°,∠ENF=45°,
    ∴△NFE是等腰直角三角形,故③正确;
    ∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,
    ∴∠ANB=∠CEA,
    在△ANB和△CEA中,,
    ∴△ANB≌△CEA(SAS),故①正确;
    ∵AN=CE,NF=EF,
    ∴BF=AF=FC,
    又∵AF⊥BC,∠ABC=45°,
    ∴△ABC是等腰直角三角形,故②正确;
    在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,
    ∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,
    ∴∠ANE=∠BCD=135°,
    在△ANE和△ECM中,,
    ∴△ANE≌△ECM(ASA),故④正确;
    ∴CM=NE,
    又∵NF=NE=MC,
    ∴AF=MC+EC,
    ∴AD=BC=2AF=MC+2EC,故⑤错误.
    综上,①②③④正确,共4个,
    故选:C.
    【点睛】
    本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
    5、D
    【解析】
    【分析】
    设点 ,根据轴,可得点 ,再根据平行四边形的性质可得点轴, ,则, ,即可求解.
    【详解】
    解:设点 ,
    ∵轴,
    ∴点 ,
    ∵四边形是平行四边形,
    ∴轴, ,
    ∴点 ,
    ∴ ,
    ∵直线分别交y轴于B两点,
    ∴当 时, ,
    ∴点 ,
    ∴ ,
    ∴,解得: ,
    ∴ ,
    ∴点 .
    故选:D
    【点睛】
    本题主要考查了一次函数的图形和性质,平行四边形的性质,熟练掌握一次函数的图形和性质,平行四边形的性质,利用数形结合思想解答是解题的关键.
    6、C
    【解析】
    【分析】
    设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.
    【详解】
    解:设每一个外角都为x,则相邻的内角为4x,
    由题意得,4x+x=180°,
    解得:x=36°,
    多边形的外角和为360°,
    360°÷36°=10,
    所以这个多边形的边数为10,
    则该多边形的内角和是:(10﹣8)×180=1440°.
    故选:C.
    【点睛】
    本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.
    7、D
    【解析】
    【分析】
    利用多边形内角和公式和外角和定理,列出方程即可解决问题.
    【详解】
    解:根据题意,得:(n-2)×180=360×2,
    解得n=6.
    故选:D.
    【点睛】
    本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.
    8、B
    【解析】
    【分析】
    根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.
    【详解】
    如图所示,

    ∵△ABC是直角三角形,
    ∴根据勾股定理:,故①正确;
    由图可知,故②正确;
    由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,
    列出等式为,
    即,故③正确;
    由可得,
    又∵,
    两式相加得:,
    整理得:,
    ,故④错误;
    故正确的是①②③.
    故答案选B.
    【点睛】
    本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.
    9、B
    【解析】
    【分析】
    由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.
    【详解】
    解:,

    在和中,


    ,(故①正确);
    于点,于点,


    四边形是平行四边形,
    ,(故②正确);




    四边形是平行四边形,(故③正确);
    由以上可得出:,,,
    ,,,等.(故④错误),
    故正确的有3个,
    故选:.
    【点评】
    此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.
    10、B
    【解析】
    【分析】
    先求出,再根据等腰三角形的三线合一可得点是的中点,然后根据三角形中位线定理即可得.
    【详解】
    解:,


    (等腰三角形的三线合一),
    即点是的中点,
    为的中点,
    是的中位线,

    故选:B.
    【点睛】
    本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.
    二、填空题
    1、3
    【解析】
    【分析】
    根据平行四边形的性质可得,,结合图形,利用线段间的数量关系可得,由平行线及角平分线可得,,得出,根据等角对等边即可得出结果.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,,
    ∵,
    ∴,
    ∵,BE平分,
    ∴,,
    ∴,
    ∴,
    故答案为:3.
    【点睛】
    题目主要考查平行四边形的性质,利用角平分线计算及平行线的性质,等角对等边求边长等,理解题意,结合图形,综合运用这些知识点是解题关键.
    2、
    【解析】
    【分析】
    根据n边形从一个顶点出发可引出(n﹣3)条对角线可直接得到答案.
    【详解】
    解:从八边形的一个顶点可引出的对角线的条数有8﹣3=5(条),
    故答案为:5.
    【点睛】
    此题主要考查了多边形的对角线,关键是掌握计算方法.
    3、48
    【解析】
    【分析】
    利用长方形的面积减去石子路的面积,即可求解.
    【详解】
    解:根据题意得:种植鲜花的面积为 .
    故答案为:48
    【点睛】
    本题主要考查了求平行四边形的面积,熟练掌握平行四边形的性质是解题的关键.
    4、90
    【解析】
    【分析】
    根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.
    【详解】
    如图,根据折叠的性质,∠1=∠2,∠3=∠4,

    ∵∠1+∠2+∠3+∠4=180°,
    ∴2∠2+2∠3=180°,
    ∴∠2+∠3=90°,
    ∴=90°,
    故答案为:90.
    【点睛】
    本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.
    5、
    【解析】
    【分析】
    设AE=x,则BE=10﹣x,由勾股定理得AD2+AE2=DE2,BC2+BE2=CE2,DE2+CE2=CD2,则AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(舍去),则AE=2,然后由勾股定理即可求解.
    【详解】
    解:设AE=x,则BE=10﹣x,
    ∵四边形ABCD是矩形,
    ∴CD=AB=10,∠A=∠B=90°,
    ∴AD2+AE2=DE2,BC2+BE2=CE2,
    ∵DE⊥CE,
    ∴∠DEC=90°,
    ∴DE2+CE2=CD2,
    ∴AD2+AE2+BC2+BE2=CD2,
    即42+x2+42+(10﹣x)2=102,
    解得:x=2或x=8(不合题意,舍去),
    ∴AE=2,
    ∴DE===2,
    故答案为:2.
    【点睛】
    本题考查了矩形的性质,勾股定理,掌握勾股定理是解题的关键.
    三、解答题
    1、 (1)B(2,0),P(2,3)
    (2)(2,3)或(,)
    (3)(0,5)或(0,-1)或(4,1)
    【解析】
    【分析】
    (1)设B(x,0),则P(x,x+2),由S△ABC=6列方程求出x的值,即得到点B和点P的坐标;
    (2)当点D与点P重合时,△ABD是直角三角形;当点D与点P不重合时,过点C作CE⊥AP,先求出直线CE的解析式,再由直线BD∥CE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;
    (3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.
    (1)
    解:如图1,设B(x,0),则P(x,x+2),

    对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,
    ∴A(-4,0),C(0,2),
    ∵点P在第一象限,且S△ABC=6,
    ∴×2(x+4)=6,
    解得x=2,
    ∴B(2,0),P(2,3).
    (2)
    如图1,点D与点P重合,此时∠ABD=∠ABP=90°,
    ∴△ABD是直角三角形,
    此时D(2,3);
    如图2,点D在线段AP上,∠ADB=90°,
    此时△ABD是直角三角形,作CE⊥AP,交x轴于点E,

    则∠ACE=∠ADB=90°,
    ∴BD∥CE,AC=,
    设E(m,0),
    由AE•OC=AC•CE=S△ACE,得AE•OC=AC•CE,
    ∴2(m+4)=CE,
    ∴CE=(m+4),
    ∵∠COE=90°,
    ∴OE2+OC2=CE2,
    ∴m2+22=(m+4)]2,
    整理得,m2-2m+1=0,
    解得,m1=m2=1,
    ∴E(1,0);
    设直线CE的解析式为y=kx+2,则k+2=0,
    解得,k=-2,
    ∴y=-2x+2;
    设直线BD的解析式为y=-2x+n,则-2×2+n=0,
    解得,n=4,
    ∴y=-2x+4,
    由,得:,
    ∴D(,);
    由图象可知,当点D在PA的延长线上,或点D在AP的延长线上,则△ABD不能是直角三角形,
    综上所述,点D的坐标是(2,3)或(,);
    (3)
    存在.如图,

    当四边形CQBP是平行四边形时,
    此时,CQ=PB=3,
    ∴Q(0,-1);
    当四边形CQ1PB是平行四边形时,
    此时,CQ1=PB=3,
    ∴Q1(0,5);
    当四边形CPQ2B是平行四边形时,
    此时,CP∥BQ2且CB∥PQ2,
    ∴Q2(4,1);
    综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).
    【点睛】
    此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.
    2、 (1)见解析
    (2)12
    【解析】
    【分析】
    (1)利用三角形的中位线定理得出EH=FG=AD,EF=GH=BC,即可得出结论;
    (2)根据含30度角的直角三角形的性质,求得,由(1)得出四边形EFGH的周长=EH+GH+FG+EF=AD+BC,即可得出结果.
    (1)
    证明:∵点E,F,G,H分别是AB,AC,CD,BD的中点.
    ∴EH=FG=AD,BC,
    ∴四边形EFGH是平行四边形;
    (2)
    ∵∠BDC=90°,∠DBC=30°,
    ∴BC=2CD=4.
    由(1)得:四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
    又∵AD=6,
    ∴四边形EFGH的周长=AD+BC=6+8=12.
    【点睛】
    本题考查了平行四边形的判定与性质,三角形的中位线定理,含30度角的直角三角形的性质,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.
    3、(1)见解析;(2)①不成立,结论:;②,见解析;(3)
    【解析】
    【分析】
    (1)证明,可得出,则结论得证;
    (2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;
    (3)求出,设,则,,在中,得出关于的方程,解出则可得解.
    【详解】
    (1)证明:把绕点顺时针旋转至,如图1,

    ,,,

    ,,三点共线,








    (2)①不成立,结论:;
    证明:如图2,将绕点顺时针旋转至,

    ,,,,




    ②如图3,将绕点逆时针旋转至,

    ,,







    即.
    故答案为:.
    (3)解:由(1)可知,

    正方形的边长为6,




    设,则,,
    在中,


    解得:.


    【点睛】
    本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
    4、 (1)见解析
    (2)AE2+ GF2=EG2,证明见解析
    【解析】
    【分析】
    (1)根据“SAS”证明△ADE≌△CDE即可;
    (2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.
    (1)
    证明:∵四边形ABCD是正方形,
    ∴AD=CD,∠ADE=∠CDE,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴AE=CE;
    (2)
    AE2+ GF2=EG2,理由:
    连接CG
    ∵△ADE≌△CDE,
    ∴∠1=∠2.
    ∵G为FH的中点,
    ∴CG=GF=GH=FH,
    ∴∠6=∠7.
    ∵∠5=∠6,
    ∴∠5=∠7.
    ∵∠1+∠5=90°,
    ∴∠2+∠7=90°,即∠ECG=90°,
    在Rt△CEG中,CE2+CG2=EG2,
    ∴AE2+ GF2=EG2.

    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.
    5、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.

    相关试卷

    2020-2021学年第二十二章 四边形综合与测试精品课时练习:

    这是一份2020-2021学年第二十二章 四边形综合与测试精品课时练习,共29页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品课时训练:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课时训练,共30页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题,共25页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map