|试卷下载
搜索
    上传资料 赚现金
    2022年最新冀教版八年级数学下册第二十二章四边形定向测试试卷
    立即下载
    加入资料篮
    2022年最新冀教版八年级数学下册第二十二章四边形定向测试试卷01
    2022年最新冀教版八年级数学下册第二十二章四边形定向测试试卷02
    2022年最新冀教版八年级数学下册第二十二章四边形定向测试试卷03
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试精品测试题

    展开
    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品测试题,共30页。试卷主要包含了已知锐角∠AOB,如图.等内容,欢迎下载使用。

    八年级数学下册第二十二章四边形定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,(   )

    A.1 B. C. D.
    2、陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是( )
    A. B.
    C. D.
    3、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
    B.满足的三个数,,是勾股数
    C.对角线相等的四边形各边中点连线所得四边形是矩形
    D.五边形的内角和为
    4、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为( )

    A.3 B.6 C. D.
    5、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为(   )

    A.22.5° B.27.5° C.30° D.35°
    6、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).

    A.112° B.108° C.104° D.98°
    7、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )

    A.1 B.4 C.2 D.6
    8、已知锐角∠AOB,如图.

    (1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;
    (2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;
    (3)作射线OP交CD于点Q.
    根据以上作图过程及所作图形,下列结论中错误的是(   )
    A.四边形OCPD是菱形 B.CP=2QC
    C.∠AOP=∠BOP D.CD⊥OP
    9、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于(  )

    A.1 B.2 C.3 D.4
    10、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记的面积为,的面积为,若正方形的边长,,则的大小为( )

    A.6 B.7 C.8 D.9
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是________边形.
    2、如图,在平面直角坐标系xOy中,有一边长为1的正方形OABC,点B在x轴的正半轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则B2的坐标是 ___;B2020的坐标是 ___.

    3、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.

    4、如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,BC=12,则EF的长为__________.

    5、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在四边形ABCD中,AB=AD,AD//BC

    (1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)
    (2)连接DF,证明四边形ABFD为菱形.
    2、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.

    (1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
    知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
    (2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
    (3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
    (4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
    3、如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.

    (1)求证:四边形EFGH是平行四边形;
    (2)如果∠BDC=90°,∠DBC=30°,,AD=6,求四边形EFGH的周长.
    4、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,E,F分别是边的中点.

    (1)若,,,,求的长.小兰说:取的中点P,连接,.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;
    (2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到、、的数量关系,你觉得小花说得对吗?若对,请你帮小花得到、、的数量关系,并说明理由.
    5、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算AC2+BC2的值等于_____;
    (2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.


    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
    【详解】
    解:四边形是正方形,
    ,,,









    是等腰直角三角形,

    故选:C.
    【点睛】
    本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
    2、C
    【解析】
    【分析】
    根据矩形的判定定理判断即可.
    【详解】
    ∵A满足的条件是有一个角是直角的平行四边形是矩形,
    ∴A合格,不符合题意;
    ∵B满足的条件是三个角是直角的四边形是矩形,
    ∴B合格,不符合题意;
    ∵C满足的条件是有一个角是直角的四边形,
    ∴无法判定,C不合格,符合题意;
    ∵D满足的条件是有一个角是直角的平行四边形是矩形,
    ∴D合格,不符合题意;
    故选C.
    【点睛】
    本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.
    3、D
    【解析】
    【分析】
    正确的命题是真命题,根据定义解答.
    【详解】
    解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
    B. 满足的三个正整数,,是勾股数,故该项不符合题意;
    C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
    D. 五边形的内角和为,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
    4、B
    【解析】
    【分析】
    连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.
    【详解】
    解:连接,

    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,AC=BD,
    ∵点是AC的中点, ∴,
    ∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,

    ∴,
    ∴是等边三角形,
    ∴∠BAA'=60°,
    ∴∠ACB=30°,
    ∵AB=3, ∴AC=2AB=6,
    ∴.
    即点B与点之间的距离为6.
    故选:B.
    【点睛】
    本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.
    5、A
    【解析】
    【分析】
    利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴BC=AD,∠DBC=45°,
    ∵BE=AD,
    ∴BE=BC,
    ∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,
    ∵AC⊥BD,
    ∴∠COE=90°,
    ∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,
    故选:A.
    【点睛】
    本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.
    6、C
    【解析】
    【分析】
    根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∵,
    ∴,
    ∴为直角三角形,
    ∵M为AF的中点,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.
    7、C
    【解析】

    8、A
    【解析】
    【分析】
    根据作图信息可以判断出OP平分,由此可以逐一判断即可.
    【详解】
    解:由作图可知,平分
    ∴OP垂直平分线段CD
    ∴∠AOP=∠BOP,CD⊥OP
    故选项C,D正确;
    由作图可知,
    ∴是等边三角形,

    ∵OP垂直平分线段CD

    ∴CP=2QC
    故选项B正确,不符合题意;
    由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,
    故选:A
    【点睛】
    本题考查了基本作图,解题的关键是熟练掌握作图的依据.
    9、B
    【解析】
    【分析】
    根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∴,
    ∵AE平分,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.
    10、D
    【解析】
    【分析】
    由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.
    【详解】
    解:∵正方形ABCD的对角线AC,BD交于点O,
    ∴OC=OD=BO=AO,∠ABO=∠ACB=45°,AC⊥BD.
    ∵∠MOB+∠BON=90°,∠BON+∠CON=90°
    ∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,
    ∴△BOM≌△CON(ASA),=S△BOM,
    ∴,
    ∵=S正方形ABCD,正方形的边长,,
    ∴=S正方形ABCD -=.
    故选:D.
    【点睛】
    本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.
    二、填空题
    1、五
    【解析】
    【分析】
    根据过多边形的一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,计算可求解.
    【详解】
    解:设这是个n边形,由题意得
    n-2=3,
    ∴n=5,
    故答案为:五.
    【点睛】
    本题主要考查多边形的对角线,掌握多边形对角线的性质是解题的关键.
    2、
    【解析】
    【分析】
    根据已知条件和勾股定理求出OB2的长度即可求出B2的坐标,再根据题意和图形可看出每经过一次变化,正方形都逆时针旋转45°,正方形的边长都乘以所以可求出从B到B2020变化的坐标.
    【详解】
    解:∵四边形OABC是边长为1正方形,


    ∴B1的坐标是,
    ∴,
    ∴B2的坐标是
    根据题意和图形可看出每经过一次变化,正方形逆时针旋转45°,其边长乘以,
    ∴B3的坐标是
    ∴B4的坐标是
    ∴旋转8次则OB旋转一周,
    ∵从B到B2020经过了2020次变化,2020÷8=252…4,
    ∴从B到B2020与B4都在x轴负半轴上,
    ∴点B2020的坐标是
    【点睛】
    本题主要考查了规律型-点的坐标,解决本题的关键是利用正方形的变化过程寻找点的变化规律.
    3、(-,1)
    【解析】
    【分析】
    首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.
    【详解】
    解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,

    则∠ODC=∠AEO=90°,
    ∴∠OCD+∠COD=90°,
    ∵四边形OABC是正方形,
    ∴OC=OA,∠AOC=90°,
    ∴∠COD+∠AOE=90°,
    ∴∠OCD=∠AOE,
    在△AOE和△OCD中,

    ∴△AOE≌△OCD(AAS),
    ∴CD=OE=1,OD=AE=,
    ∴点C的坐标为:(-,1).
    故答案为:(-,1).
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.
    4、4
    【解析】
    【分析】
    根据平行四边形的性质可得,由角平分线可得,所以,所以,同理可得,则根据即可求解.
    【详解】
    ∵四边形是平行四边形,
    ∴,,,
    ∴,
    ∴平分,
    ∴,
    ∴,
    ∴,
    同理可得,
    ∴.
    故答案为:4
    【点睛】
    本题主要考查了平行四边形的性质、角平分线的定义,转化线段是解题的关键.
    5、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.

    在直角三角形ABE中,
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    三、解答题
    1、 (1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)直接利用线段垂直平分线的作法得出答案;
    (2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.
    (1)
    (1)如图:EF即为所求作

    (2)
    证明:如图,连接DF,
    ∵AD//BC,
    ∴∠ADE=∠EBF,
    ∵AF垂直平分BD,
    ∴BE=DE.
    在△ADE和△FBE中,

    ∴△ADE≌△FBE(ASA),
    ∴AE=EF,
    ∴BD与AF互相垂直且平分,
    ∴四边形ABFD为菱形.
    【点睛】
    此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.
    2、 (1)150°;
    (2)见详解;
    (3);
    (4).
    【解析】
    【分析】
    (1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;
    (2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;
    (3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;
    (4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.
    (1)
    解:连结PP′,
    ∵≌,
    ∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,
    ∵△ABC为等边三角形,
    ∴∠BAC=60°
    ∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,
    ∴△APP′为等边三角形,
    ,∴PP′=AP=3,∠AP′P=60°,
    在△P′PC中,PC=5,

    ∴△PP′C是直角三角形,∠PP′C=90°,
    ∴∠AP′C=∠APP+∠PPC=60°+90°=150°,
    ∴∠APB=∠AP′C=150°,
    故答案为150°;

    (2)
    证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,
    ∵△APB≌△AB′P′,
    ∴AP=AP′,PB=PB′,AB=AB′,
    ∵∠PAP′=∠BAB′=60°,
    ∴△APP′和△ABB′均为等边三角形,
    ∴PP′=AP,
    ∵,
    ∴点C,点P,点P′,点B′四点共线时,最小=CB′,
    ∴点P在CB′上,
    ∴过的费马点.

    (3)
    解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,
    ∴△APB≌△AP′B′,
    ∴AP′=AP,AB′=AB,
    ∵∠PAP′=∠BAB′=60°,
    ∴△APP′和△ABB′均为等边三角形,
    ∴PP′=AP,BB′=AB,∠ABB′=60°,

    ∴点C,点P,点P′,点B′四点共线时,最小=CB′,
    ∵,,,
    ∴AB=2AC=2,根据勾股定理BC=
    ∴BB′=AB=2,
    ∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,
    ∴在Rt△CBB′中,B′C=
    ∴最小=CB′=;

    (4)
    解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,
    ∴△BCE≌△CE′B′,
    ∴BE=B′E′,CE=CE′,CB=CB′,
    ∵∠ECE′=∠BCB′=60°,
    ∴△ECE′与△BCB′均为等边三角形,
    ∴EE′=EC,BB′=BC,∠B′BC=60°,
    ∵,
    ∴点C,点E,点E′,点B′四点共线时,最小=AB′,
    ∵四边形ABCD为正方形,
    ∴AB=BC=2,∠ABC=90°,
    ∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,
    ∵B′F⊥AF,
    ∴BF=,BF=,
    ∴AF=AB+BF=2+,
    ∴AB′=,
    ∴最小=AB′=.

    【点睛】
    本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.
    3、 (1)见解析
    (2)12
    【解析】
    【分析】
    (1)利用三角形的中位线定理得出EH=FG=AD,EF=GH=BC,即可得出结论;
    (2)根据含30度角的直角三角形的性质,求得,由(1)得出四边形EFGH的周长=EH+GH+FG+EF=AD+BC,即可得出结果.
    (1)
    证明:∵点E,F,G,H分别是AB,AC,CD,BD的中点.
    ∴EH=FG=AD,BC,
    ∴四边形EFGH是平行四边形;
    (2)
    ∵∠BDC=90°,∠DBC=30°,
    ∴BC=2CD=4.
    由(1)得:四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
    又∵AD=6,
    ∴四边形EFGH的周长=AD+BC=6+8=12.
    【点睛】
    本题考查了平行四边形的判定与性质,三角形的中位线定理,含30度角的直角三角形的性质,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.
    4、 (1)
    (2),理由见解析
    【解析】
    【分析】
    (1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;
    (2)方法同(1).
    (1)
    解:如图,取的中点P,连接,,

    P,E,F分别是边的中点, ,,
    ,,
    ,,
    ,,

    在中,,

    (2)
    ,理由如下,
    如图,取的中点P,连接,,

    P,E,F分别是边的中点,,
    ,,

    ,,

    在中,,


    【点睛】
    本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键.
    5、 11 见解析
    【解析】
    【分析】
    (1)直接利用勾股定理求出即可;
    (2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
    【详解】
    解:(1)AC2+BC2=()2+32=11;
    故答案为:11;
    (2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
    延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,

    【点睛】
    本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.

    相关试卷

    初中冀教版第二十二章 四边形综合与测试精品同步训练题: 这是一份初中冀教版第二十二章 四边形综合与测试精品同步训练题,共26页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题,共33页。试卷主要包含了已知,下列说法错误的是等内容,欢迎下载使用。

    初中数学第二十二章 四边形综合与测试优秀课后测评: 这是一份初中数学第二十二章 四边形综合与测试优秀课后测评,共28页。试卷主要包含了如图,菱形的对角线,如图,在正方形ABCD中,点E,如图,在中,DE平分,,则等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map