搜索
    上传资料 赚现金
    英语朗读宝

    难点解析冀教版八年级数学下册第二十二章四边形综合测评试卷(精选含答案)

    难点解析冀教版八年级数学下册第二十二章四边形综合测评试卷(精选含答案)第1页
    难点解析冀教版八年级数学下册第二十二章四边形综合测评试卷(精选含答案)第2页
    难点解析冀教版八年级数学下册第二十二章四边形综合测评试卷(精选含答案)第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题,共30页。
    八年级数学下册第二十二章四边形综合测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,(   )

    A.1 B. C. D.
    2、已知:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE至点F,使得EF=DE,那么四边形AFCD一定是( )
    A.菱形 B.矩形 C.直角梯形 D.等腰梯形
    3、在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )

    A.18 B.16 C.14 D.12
    4、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )

    A. B. C. D.
    5、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是(  )
    A.6 B.12 C.24 D.48
    6、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是(   )
    A.3 B. C. D.6
    7、若菱形的周长为8,高为2,则菱形的面积为( )
    A.2 B.4 C.8 D.16
    8、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是(  )
    A.360° B.900° C.1440° D.1800°
    9、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为(   )

    A.22.5° B.27.5° C.30° D.35°
    10、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
    C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,∠ACB=90°,DEBC,DE=AC,若AC=2, AD=DB=4,∠ADC=30°.以下四个结论:①四边形ACED是平行四边形;②∠ABE=;③AB=;④点F是AD中点,点G、H分别是线段BC、AB上的动点,则FG+GH的最小值为.正确的是_____.(填序号)

    2、如图,在中,,D为外一点,使,E为BD的中点若,则__________.

    3、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
    4、在菱形中,,其所对的对角线长为2,则菱形的面积是__.
    5、如图,菱形ABCD的边长为4,∠BAD=120°,E是边CD的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60°得到线段EF',连接AF'、BF',则△ABF'的周长的最小值是________________.

    三、解答题(5小题,每小题10分,共计50分)
    1、若直线分别交轴、轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥轴,B为垂足,且S△ABC= 6

    (1)求点B和P的坐标;
    (2)点D是直线AP上一点,△ABD是直角三角形,求点D坐标;
    (3)请问坐标平面是否存在点Q,使得以Q、C、P、B为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.
    2、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.

    (1)若∠BAE=50°,求∠DGF的度数;
    (2)求证:DF=DC.
    3、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.

    4、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.

    ①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
    ②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
    (2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
    ①方法1:一路往下数,不回头数.
    以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
    以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
    以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
    以OAn-1为边的锐角有∠An-1OAn,共有1个;
    则图中锐角的总个数是 ;
    ②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
    用两种不同的方法数锐角个数,可以得到等式 .
    (3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
    ①计算:19782+20222;
    ②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
    5、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算AC2+BC2的值等于_____;
    (2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.


    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
    【详解】
    解:四边形是正方形,
    ,,,









    是等腰直角三角形,

    故选:C.
    【点睛】
    本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
    2、B
    【解析】
    【分析】
    先证明四边形ADCF是平行四边形,再证明AC=DF即可.
    【详解】
    解:∵E是AC中点,
    ∴AE=EC,
    ∵DE=EF,
    ∴四边形ADCF是平行四边形,
    ∵AD=DB,AE=EC,
    ∴DE=BC,
    ∴DF=BC,
    ∵CA=CB,
    ∴AC=DF,
    ∴四边形ADCF是矩形;
    故选:B.

    【点睛】
    本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.
    3、B
    【解析】

    4、A
    【解析】
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.

    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    5、C
    【解析】
    【分析】
    利用菱形的面积公式即可求解.
    【详解】
    解:菱形ABCD的面积===24,
    故选:C.
    【点睛】
    本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.
    6、C
    【解析】
    【分析】
    画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在Rt△ABC中,由勾股定理可求得BC的长.
    【详解】
    解:如下图所示:

    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,OA=AC,OB=BD,AC=BD,
    ∴OA=OB,
    ∵∠AOD=120°,
    ∴∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴OA=AB=2,
    ∴AC=2OA=4,
    ∴BC2=AC2-AB2=36-9=27,
    ∴BC=.
    故选:D.
    【点睛】
    本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    7、B
    【解析】
    【分析】
    根据周长求出边长,利用菱形的面积公式即可求解.
    【详解】
    ∵菱形的周长为8,
    ∴边长=2,
    ∴菱形的面积=2×2=4,
    故选:B.
    【点睛】
    此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
    8、C
    【解析】
    【分析】
    设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.
    【详解】
    解:设每一个外角都为x,则相邻的内角为4x,
    由题意得,4x+x=180°,
    解得:x=36°,
    多边形的外角和为360°,
    360°÷36°=10,
    所以这个多边形的边数为10,
    则该多边形的内角和是:(10﹣8)×180=1440°.
    故选:C.
    【点睛】
    本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.
    9、A
    【解析】
    【分析】
    利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴BC=AD,∠DBC=45°,
    ∵BE=AD,
    ∴BE=BC,
    ∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,
    ∵AC⊥BD,
    ∴∠COE=90°,
    ∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°,
    故选:A.
    【点睛】
    本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.
    10、A
    【解析】
    【分析】
    根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
    【详解】
    解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
    B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
    C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
    D、有三个角是直角的四边形是矩形,所以该选项不正确.
    故选:A.
    【点睛】
    本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
    二、填空题
    1、①③④
    【解析】
    【分析】
    证明,结合DE=AC,可判定结论①;假设∠ABE=,在中,根据勾股定理得到,则假设不成立,可判断结论②;在中和中,利用勾股定理可求出AB的值,即可判断结论③;作点F关于BC对称的点F’,作于点H,与BC相交于点G,则,,根据“直线外一点到直线的距离,垂线段最短”可知,此时FG+GH有最小值.通过勾股定理分别求得FG、GH的值,相加即可判断结论④.
    【详解】
    解:∵∠ACB=90°,DEBC,
    ∴∠CDE=∠ACB=90°,

    又∵DE=AC,
    ∴四边形ACED是平行四边形;故结论①正确.
    ∵AD=DB=4,∠ADC=30°,
    ∴∠ABC=∠DAB=,
    假设∠ABE=,则,
    ∴在中,,
    ∴,
    ∴假设不成立;故结论②错误.
    在中,,,
    ∴,

    ∴在中,,,
    ∴,
    即AB=;故结论③正确.
    如图所示,作点F关于BC对称的点F’,作于点H,与BC相交于点G,则,,根据“直线外一点到直线的距离,垂线段最短”可知,此时FG+GH有最小值.

    连接AG,与BC相交于点M,
    ∵,∠ABC=,
    ∴,
    ∴,
    ∵四边形ACED是平行四边形,
    ∴,
    ∴,

    又∵点F是AD中点,点F与点F’关于BC对称,AD=4,
    ∴,
    ∴,
    ∴,
    ∴为等腰直角三角形,
    ∴,,
    ∴,
    又∵∠DAB=,
    ∴,
    ∴在中,,
    ∵点F是AD中点,点F与点F’关于BC对称,,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴在中,,
    ∴,
    即FG+GH的最小值为;故结论④正确.
    故答案为:①③④.
    【点睛】
    本题考查勾股定理的应用.其中涉及平行线的判定,平行四边形的判定和性质,直角三角形中角所对的直角边等于斜边的一半,等腰直角三角形的判定和性质,“一定两动”求线段最小值等问题.综合性较强.
    2、##30度
    【解析】
    【分析】
    延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.
    【详解】
    解:延长BC、AD交于F,

    在△ABC和△AFC中

    ∴△ABC≌△AFC(ASA),
    ∴BC=FC,
    ∴C为BF的中点,
    ∵E为BD的中点,
    ∴CE为△BDF的中位线,
    ∴CE//AF,
    ∴∠ACE=∠CAF,
    ∵∠ACB=90°,∠ABC=60°,
    ∴∠BAC=30°,
    ∴∠ACE=∠CAF=∠BAC=30°,
    故答案为:30°.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.
    3、八
    【解析】
    【分析】
    根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
    【详解】
    解:由题意得,n-2=6,
    解得:n=8,
    故答案为:八.
    【点睛】
    本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
    4、
    【解析】
    【分析】
    根据菱形的性质证得△ABD是等边三角形,得到OB,利用勾股定理求出OA,由菱形的性质求出菱形的面积.
    【详解】
    解:如图所示:

    在菱形中,,其所对的对角线长为2,
    ,,,,
    是等边三角形,
    则,
    故,
    则,故,
    则菱形的面积.
    故答案为:.
    【点睛】
    此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.
    5、4+2
    【解析】
    【分析】
    取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.
    【详解】
    解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,

    ∵四边形ABCD为菱形,
    ∴AB=AD,
    ∵∠BAD=120°,
    ∴∠CAD=60°,
    ∴△ACD为等边三角形,
    又∵DE=DG,
    ∴△DEG也为等边三角形.
    ∴DE=GE,
    ∵∠DEG=60°=∠FEF',
    ∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG,
    即∠DEF=∠GEF',
    由线段EF绕着点E顺时针旋转60°得到线段EF',
    所以EF=EF'.
    在△DEF和△GEF'中,

    ∴△DEF≌△GEF'(SAS).
    ∴∠EGF'=∠EDF=60°,
    ∴∠F'GA=180°﹣60°﹣60°=60°,
    则点F'的运动轨迹为射线GF'.
    观察图形,可得A,E关于GF'对称,
    ∴AF'=EF',
    ∴BF'+AF'=BF'+EF'≥BE,
    在Rt△BCH中,
    ∵∠H=90°,BC=4,∠BCH=60°,
    ∴,
    在Rt△BEH中,BE===2,
    ∴BF'+EF'≥2,
    ∴△ABF'的周长的最小值为AB+BF'+EF'=4+2,
    故答案为:4+2.
    【点睛】
    本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.
    三、解答题
    1、 (1)B(2,0),P(2,3)
    (2)(2,3)或(,)
    (3)(0,5)或(0,-1)或(4,1)
    【解析】
    【分析】
    (1)设B(x,0),则P(x,x+2),由S△ABC=6列方程求出x的值,即得到点B和点P的坐标;
    (2)当点D与点P重合时,△ABD是直角三角形;当点D与点P不重合时,过点C作CE⊥AP,先求出直线CE的解析式,再由直线BD∥CE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;
    (3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.
    (1)
    解:如图1,设B(x,0),则P(x,x+2),

    对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,
    ∴A(-4,0),C(0,2),
    ∵点P在第一象限,且S△ABC=6,
    ∴×2(x+4)=6,
    解得x=2,
    ∴B(2,0),P(2,3).
    (2)
    如图1,点D与点P重合,此时∠ABD=∠ABP=90°,
    ∴△ABD是直角三角形,
    此时D(2,3);
    如图2,点D在线段AP上,∠ADB=90°,
    此时△ABD是直角三角形,作CE⊥AP,交x轴于点E,

    则∠ACE=∠ADB=90°,
    ∴BD∥CE,AC=,
    设E(m,0),
    由AE•OC=AC•CE=S△ACE,得AE•OC=AC•CE,
    ∴2(m+4)=CE,
    ∴CE=(m+4),
    ∵∠COE=90°,
    ∴OE2+OC2=CE2,
    ∴m2+22=(m+4)]2,
    整理得,m2-2m+1=0,
    解得,m1=m2=1,
    ∴E(1,0);
    设直线CE的解析式为y=kx+2,则k+2=0,
    解得,k=-2,
    ∴y=-2x+2;
    设直线BD的解析式为y=-2x+n,则-2×2+n=0,
    解得,n=4,
    ∴y=-2x+4,
    由,得:,
    ∴D(,);
    由图象可知,当点D在PA的延长线上,或点D在AP的延长线上,则△ABD不能是直角三角形,
    综上所述,点D的坐标是(2,3)或(,);
    (3)
    存在.如图,

    当四边形CQBP是平行四边形时,
    此时,CQ=PB=3,
    ∴Q(0,-1);
    当四边形CQ1PB是平行四边形时,
    此时,CQ1=PB=3,
    ∴Q1(0,5);
    当四边形CPQ2B是平行四边形时,
    此时,CP∥BQ2且CB∥PQ2,
    ∴Q2(4,1);
    综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).
    【点睛】
    此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.
    2、 (1)∠DGF=25°;
    (2)见解析
    【解析】
    【分析】
    (1)由旋转的性质得出AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;
    (2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.
    (1)
    解:由旋转得AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,
    ∴∠BAE=∠DAG=50°,
    ∴∠AGD=∠ADG==65°,
    ∴∠DGF=90°-65°=25°;
    (2)
    证明:连接AF,

    由旋转得矩形AEFG≌矩形△ABCD,
    ∴AF=BD,∠FAE=∠ABE=∠AEB,
    ∴AF∥BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=DC.
    【点睛】
    本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.
    3、150°
    【解析】
    【分析】
    先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.
    【详解】
    解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,
    ∴∠ADC=180°-∠ADE=55°,
    ∵∠A+∠B+∠C+∠ADE=360°,
    ∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.
    【点睛】
    此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.
    4、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
    【解析】
    【分析】
    (1)①根据边长为(a+b)的正方形面积公式求解即可;
    ②利用矩形和正方形的面积公式求解即可;
    (2)①根据题中的数据求和即可;
    ②根据题意求解即可;
    (3)①利用(1)的规律求解即可;
    ②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
    【详解】
    解:(1)①大正方形的面积为;
    ②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
    可以得到等式:=;
    故答案为:①;②;=;
    (2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
    ②锐角的总个数是n(n-1);
    可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
    故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
    (3)①19782+20222=[2000+(-22)]2+(2000+22)2
    =20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
    =2×(20002+222)
    =2×[4000000+(20+2)2]
    =2×[4000000+(202+22+2×20×2)]=8000968;
    ②一个四边形共有2条对角线,即×4×(4-3)=2;
    一个五边形共有5条对角线,即×5×(5-3)=5;
    一个六边形共有9条对角线,即×6×(6-3)=9;
    ……,
    一个十七边形共有×17×(17-3)=119条对角线;
    一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
    故答案为:119,n(n-3).
    【点睛】
    本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
    5、 11 见解析
    【解析】
    【分析】
    (1)直接利用勾股定理求出即可;
    (2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
    【详解】
    解:(1)AC2+BC2=()2+32=11;
    故答案为:11;
    (2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
    延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,

    【点睛】
    本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步测试题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步测试题,共34页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试优秀课时作业:

    这是一份数学八年级下册第二十二章 四边形综合与测试优秀课时作业,共29页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。

    数学第二十二章 四边形综合与测试精品习题:

    这是一份数学第二十二章 四边形综合与测试精品习题,共25页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map