开学活动
搜索
    上传资料 赚现金

    难点详解冀教版八年级数学下册第二十二章四边形专题练习练习题(无超纲)

    难点详解冀教版八年级数学下册第二十二章四边形专题练习练习题(无超纲)第1页
    难点详解冀教版八年级数学下册第二十二章四边形专题练习练习题(无超纲)第2页
    难点详解冀教版八年级数学下册第二十二章四边形专题练习练习题(无超纲)第3页
    还剩32页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀课堂检测

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀课堂检测,共35页。试卷主要包含了如图,正方形的边长为,对角线,下列关于的叙述,正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知正方形的边长为4,是对角线上一点,于点,于点,连接,.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个( )

    A.3 B.4 C.5 D.6
    2、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为(  )

    A.1 B.2 C. D.2
    3、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )

    A.OA=OC,OB=OD B.AB=CD,AO=CO
    C.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD
    4、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,(   )

    A.1 B. C. D.
    5、陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是( )
    A. B.
    C. D.
    6、如图,正方形的边长为,对角线、相交于点.为上的一点,且,连接并延长交于点.过点作于点,交于点,则的长为( )

    A. B. C. D.
    7、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).

    A.112° B.108° C.104° D.98°
    8、下列关于的叙述,正确的是( )
    A.若,则是矩形 B.若,则是正方形
    C.若,则是菱形 D.若,则是正方形
    9、下列命题中,是真命题的是( ).A.三角形的外心是三角形三个内角角平分线的交点
    B.满足的三个数,,是勾股数
    C.对角线相等的四边形各边中点连线所得四边形是矩形
    D.五边形的内角和为
    10、在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )

    A.18 B.16 C.14 D.12
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在▱ABCD中,AC是对角线,∠ACD=90°,点E是BC的中点,AF平分∠BAC,CF⊥AF于点F,连接EF.已知AB=5,BC=13,则EF的长为__.

    2、若一个多边形的内角和是外角和的倍,则它的边数是_______.
    3、如图所示,过六边形的顶点的所有对角线可将六边形分成_______个三角形.

    4、(1)两组对边分别________的四边形是平行四边形
    ∵AB∥CD,AD∥BC,
    ∴四边形ABCD是平行四边形
    (2)两组对边分别________的四边形是平行四边形
    ∵AB=CD,AD=BC,
    ∴四边形ABCD是平行四边形
    (3)两组对角分别________的四边形是平行四边形
    ∵∠A= ∠C,
    ∠B=∠D,
    ∴四边形ABCD是平行四边形
    (4)对角线________的四边形是平行四边形
    ∵AO=CO,BO=DO,
    ∴四边形ABCD是平行四边形
    (5)一组对边________的四边形是平行四边形
    ∵AD=BC,AD∥BC,
    ∴四边形ABCD是平行四边形

    5、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.

    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.

    (1)若,则点,,的坐标分别是(  ),(  ),(  );
    (2)若△是以为底的等腰三角形,
    ①直接写出的值;
    ②若直线与△有公共点,求的取值范围.
    (3)若直线与△有公共点,求的取值范围.
    2、如图,已知平行四边形ABCD.

    (1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)
    (2)在(1)所作的图形中,证明四边形BEDF为平行四边形.
    3、如图,直线,线段分别与直线、交于点、点,满足.

    (1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)
    (2)求证:四边形为菱形.(请补全下面的证明过程)
    证明:
    ____①____
    垂直平分

    ∴____②____
    ____③____



    ∴四边形是___④_____

    ∴四边形是菱形(______⑤__________)(填推理的依据).
    4、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.

    (1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
    知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
    (2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
    (3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
    (4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
    5、如图,▱ABCD中,E为BC边的中点,求证:DC=CF.


    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    如图,过点作于点,连接,可说明四边形为矩形,,,是等腰直角三角形,;①中,可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②,四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④,当最小时,最小,即时,最小,计算即可;⑤在和中,勾股定理求得,将线段等量替换求解即可;⑥如图1,延长与交于点,证明,得,,,进而可说明.
    【详解】
    解:如图,过点作于点,连接,

    由题意知
    ∴四边形为平行四边形

    ∴四边形为矩形





    ∴是等腰直角三角形

    ①∵,
    ∴为等腰直角三角形



    ∴四边形是平行四边形


    故①正确;
    ②∵
    ∴四边形为矩形
    ∴四边形的周长
    故②正确;
    ③四边形为矩形

    ∵在和中




    故③正确;
    ④∵
    当最小时,最小
    ∴当时,即时,的最小值等于
    故④正确;
    ⑤在和中,,

    故⑤正确;
    ⑥如图1,延长与交于点

    ∵在和中







    故⑥正确;
    综上,①②③④⑤⑥正确,
    故选:.
    【点睛】
    本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.
    2、C
    【解析】
    【分析】
    根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=AD,∠BAE=∠ADF=90°,
    在△ABE与△DAF中,

    ∴△ABE≌△DAF(SAS),
    ∴∠ABE=∠DAF,
    ∴∠ABE+∠BAO=∠DAF+∠BAO=90°,
    ∴∠AOB=90°,
    ∵△ABE≌△DAF,
    ∴S△ABE=S△DAF,
    ∴S△ABE-S△AOE=S△DAF-S△AOE,
    即S△ABO=S四边形OEDF=1,
    ∵OA=1,
    ∴BO=2,
    ∴AB=,
    故选:C.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.
    3、B
    【解析】

    4、C
    【解析】
    【分析】
    证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
    【详解】
    解:四边形是正方形,
    ,,,









    是等腰直角三角形,

    故选:C.
    【点睛】
    本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
    5、C
    【解析】
    【分析】
    根据矩形的判定定理判断即可.
    【详解】
    ∵A满足的条件是有一个角是直角的平行四边形是矩形,
    ∴A合格,不符合题意;
    ∵B满足的条件是三个角是直角的四边形是矩形,
    ∴B合格,不符合题意;
    ∵C满足的条件是有一个角是直角的四边形,
    ∴无法判定,C不合格,符合题意;
    ∵D满足的条件是有一个角是直角的平行四边形是矩形,
    ∴D合格,不符合题意;
    故选C.
    【点睛】
    本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.
    6、C
    【解析】
    【分析】
    根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长
    【详解】
    解:如图,设的交点为,

    四边形是正方形
    ,,
    ,,
    ,,





    在与中



    在中,
    故选C
    【点睛】
    本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.
    7、C
    【解析】
    【分析】
    根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∵,
    ∴,
    ∴为直角三角形,
    ∵M为AF的中点,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.
    8、A
    【解析】
    【分析】
    由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.
    【详解】
    解:中,,
    四边形是矩形,选项符合题意;
    中,,
    四边形是菱形,不一定是正方形,选项不符合题意;
    中,,
    四边形是矩形,不一定是菱形,选项不符合题意;
    中,,
    四边形是菱形,选项不符合题意;
    故选:.
    【点睛】
    本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.
    9、D
    【解析】
    【分析】
    正确的命题是真命题,根据定义解答.
    【详解】
    解:A. 三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;
    B. 满足的三个正整数,,是勾股数,故该项不符合题意;
    C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;
    D. 五边形的内角和为,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.
    10、B
    【解析】

    二、填空题
    1、##3.5
    【解析】
    【分析】
    延长AB、CF交于点H,由“ASA”可证,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.
    【详解】
    解:如图,延长AB、CF交于点H,

    ∵四边形ABCD是平行四边形,
    ∴,
    ∴∠ACD=∠BAC=90°,
    ∴,
    ∵AF平分∠BAC,
    ∴∠BAF=∠CAF=45°,
    在和中,

    ∴,
    ∴AC=AH=12,HF=CF,
    ∴BH=AH﹣AB=7,
    ∵点E是BC的中点,HF=CF,
    ∴EF=BH=,
    故答案为:.
    【点睛】
    本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线的定理,添加恰当辅助线构造全等三角形是本题的关键.
    2、
    【解析】
    【分析】
    根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.
    【详解】
    解:设这个多边形的边数是n,
    根据题意得,(n−2)•180°=2×360°,
    解得n=6.
    答:这个多边形的边数是6.
    故答案为:6.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.
    3、4
    【解析】
    【分析】
    从边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成个三角形,依此作答.
    【详解】
    解:过六边形的顶点的所有对角线可将六边形分成个三角形.
    故答案为4.
    【点睛】
    本题主要考查多边形的对角线,从边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为.
    4、 平行 相等 相等 互相平分 平行且相等
    【解析】

    5、18°##18度
    【解析】
    【分析】
    由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
    在△DCE和△BCE中,

    ∴△DCE≌△BCE(SAS),
    ∴∠CED=∠CEB=∠BED=63°,
    ∵∠CED=∠CAD+∠ADE,
    ∴∠ADE=63°-45°=18°,
    故答案为:18°.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
    三、解答题
    1、 (1)-3,3,1,3,-3,-1
    (2)①-2;②
    (3)或
    【解析】
    【分析】
    (1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
    (2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
    ②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
    (3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
    (1)
    解:,,
    ,轴.
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向左平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向右平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    对角线的中点与的中点重合,
    的中点为,,

    故答案为:,,;
    (2)
    解:①如图,若△是以为底的等腰三角形,

    四边形,,是平行四边形,
    ,,,
    、、在同一直线上,、、在同一直线上,,
    是等腰三角形△的中位线,
    ,,
    ,,,


    ②由①得,
    ,.
    当直线过点时,,解得:,
    当直线过点时,,解得:,
    的取值范围为;
    (3)
    解:如图,,,,
    ,.

    连接、交于点,
    四边形是平行四边形,
    点、关于点对称,

    直线与△有公共点,
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    综上,的取值范围为或.
    【点睛】
    本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
    2、 (1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;
    (2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.
    (1)
    如图,DE、BF为所作;

    (2)
    证明:∵四边形ABCD为平行四边形,
    ∴AD=BC,AB=CD,AD∥BC,
    ∵CE=CD,
    ∴CE=AB,
    ∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∵AFBC,
    ∴∠CBF=∠F,
    ∴∠ABF=∠F,
    ∴AB=AF,
    ∴CE=AF,即CB+BE=AD+DF,
    ∴BE=DF,
    ∵BEDF,
    ∴四边形BEDF为平行四边形.
    【点睛】
    本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.
    3、 (1)见解析
    (2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形
    【解析】
    【分析】
    (1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    (2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).
    (1)
    解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    如图所示

    (2)
    证明:,
    ∠2①,
    垂直平分 ,
    ,,
    ∴②△EOC,
    OF③,



    ∴四边形是平行四边形④,

    ∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),
    故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.
    【点睛】
    本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.
    4、 (1)150°;
    (2)见详解;
    (3);
    (4).
    【解析】
    【分析】
    (1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;
    (2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;
    (3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;
    (4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.
    (1)
    解:连结PP′,
    ∵≌,
    ∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,
    ∵△ABC为等边三角形,
    ∴∠BAC=60°
    ∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,
    ∴△APP′为等边三角形,
    ,∴PP′=AP=3,∠AP′P=60°,
    在△P′PC中,PC=5,

    ∴△PP′C是直角三角形,∠PP′C=90°,
    ∴∠AP′C=∠APP+∠PPC=60°+90°=150°,
    ∴∠APB=∠AP′C=150°,
    故答案为150°;

    (2)
    证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,
    ∵△APB≌△AB′P′,
    ∴AP=AP′,PB=PB′,AB=AB′,
    ∵∠PAP′=∠BAB′=60°,
    ∴△APP′和△ABB′均为等边三角形,
    ∴PP′=AP,
    ∵,
    ∴点C,点P,点P′,点B′四点共线时,最小=CB′,
    ∴点P在CB′上,
    ∴过的费马点.

    (3)
    解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,
    ∴△APB≌△AP′B′,
    ∴AP′=AP,AB′=AB,
    ∵∠PAP′=∠BAB′=60°,
    ∴△APP′和△ABB′均为等边三角形,
    ∴PP′=AP,BB′=AB,∠ABB′=60°,

    ∴点C,点P,点P′,点B′四点共线时,最小=CB′,
    ∵,,,
    ∴AB=2AC=2,根据勾股定理BC=
    ∴BB′=AB=2,
    ∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,
    ∴在Rt△CBB′中,B′C=
    ∴最小=CB′=;

    (4)
    解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,
    ∴△BCE≌△CE′B′,
    ∴BE=B′E′,CE=CE′,CB=CB′,
    ∵∠ECE′=∠BCB′=60°,
    ∴△ECE′与△BCB′均为等边三角形,
    ∴EE′=EC,BB′=BC,∠B′BC=60°,
    ∵,
    ∴点C,点E,点E′,点B′四点共线时,最小=AB′,
    ∵四边形ABCD为正方形,
    ∴AB=BC=2,∠ABC=90°,
    ∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,
    ∵B′F⊥AF,
    ∴BF=,BF=,
    ∴AF=AB+BF=2+,
    ∴AB′=,
    ∴最小=AB′=.

    【点睛】
    本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.
    5、见解析
    【解析】
    【分析】
    根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∴∠BAE=∠CFE;
    ∵E为BC中点,
    ∴EB=EC,
    在△ABE与△FCE中,

    ∴△ABE≌△FCE(AAS),
    ∴AB=CF,
    ∴DC=CF.
    【点睛】
    本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时作业:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时作业,共33页。试卷主要包含了如图,E等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试优秀课时训练:

    这是一份数学八年级下册第二十二章 四边形综合与测试优秀课时训练,共27页。试卷主要包含了下列关于的叙述,正确的是,如图,正方形的边长为,对角线,六边形对角线的条数共有等内容,欢迎下载使用。

    初中数学第二十二章 四边形综合与测试精品同步训练题:

    这是一份初中数学第二十二章 四边形综合与测试精品同步训练题,共25页。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map