鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题
展开六年级数学下册第五章基本平面图形同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )
A. B.
C. D.
2、上午8:30时,时针和分针所夹锐角的度数是( )
A.75° B.80° C.70° D.67.5°
3、下列各角中,为锐角的是( )
A.平角 B.周角 C.直角 D.周角
4、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )
A.两点确定一条直线 B.两点之间,线段最短
C.射线只有一个端点 D.过一点有无数条直线
5、下列说法中正确的是( )
A.两点之间所有的连线中,直线最短 B.射线AB和射线BA是同一条射线
C.一个角的余角一定比这个角大 D.一个锐角的补角比这个角的余角大90°
6、如图,B岛在A岛南偏西55°方向,B岛在C岛北偏西60°方向, C岛在A岛南偏东30°方向.从B岛看A,C两岛的视角∠ABC度数为( )
A.50° B.55° C.60° D.65°
7、上午10:00,钟面上时针与分针所成角的度数是( )
A.30° B.45° C.60° D.75°
8、图中共有线段( )
A.3条 B.4条 C.5条 D.6条
9、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )
A. B. C. D.
10、下列图形中,能用,,三种方法表示同一个角的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点C,D在直线AB上,且,若,则CD的长为______.
2、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=__________时,AB所在直线与CD所在直线互相垂直.
3、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.
4、将一副直角三角板按如图放置,使两直角重合,则∠1的度数为______.
5、比较大小:18.25°______18°25′(填“>”“<”或“=”)
三、解答题(5小题,每小题10分,共计50分)
1、如图1,OA⊥OB,∠COD=60°.
(1)若∠BOC=∠AOD,求∠AOD的度数;
(2)若OC平分∠AOD,求∠BOC的度数;
(3)如图2,射线OB与OC重合,若射线OB以每秒15°的速度绕点O逆时针旋转,同时射线OC以每秒10°的速度绕点O顺时针旋转,当射线OB与OA重合时停止运动.设旋转的时间为t秒,请直接写出图中有一条射线平分另外两条射线所夹角时t的值.
2、如图,已知平分平分.
(1)求的度数.
(2)求的度数.
3、如图,已知点A,B,C,请按要求画出图形.
(1)画直线AB和射线CB;
(2)连结AC,并在直线AB上用尺规作线段AE,使;(要求保留作图痕迹)
4、如图,点为直线上一点,过点作射线,使.将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.
(1)将图1中的三角板绕点逆时针旋转至图2,使一边在的内部,且恰好平分.求的度数.
(2)将图1中的三角板绕点以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为多少?(直接写结果,不写步骤)
5、已知∠AOB是直角,∠AOC是锐角,OC在∠AOB的内部,OD平分∠AOC,OE平分∠BOC.
(1)根据题意画出图形;
(2)求出∠DOE的度数;
(3)若将条件“∠AOB是直角”改为“∠AOB为锐角,且∠AOB=n°”,其它条件不变,请直接写出∠DOE的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据两点之间线段最短,对四个选项中的路线作比较即可.
【详解】
解:四个选项均为从A→C然后去B
由两点之间线段最短可知,由C到B的连线是最短的
由于F在CB线上,故可知A→C→F→B是最近的路线
故选B.
【点睛】
本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.
2、A
【解析】
【分析】
根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,
此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.
故选:A.
【点睛】
本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.
3、B
【解析】
【分析】
求出各个选项的角的度数,再判断即可.
【详解】
解:A. 平角=90°,不符合题意;
B. 周角=72°,符合题意;
C. 直角=135°,不符合题意;
D. 周角=180°,不符合题意;
故选:B.
【点睛】
本题考查了角的度量,解题关键是明确周角、平角、直角的度数.
4、A
【解析】
【分析】
两个学生看成点,根据两点确定一条直线的知识解释即可.
【详解】
∵两点确定一条直线,
∴选A.
【点睛】
本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.
5、D
【解析】
【分析】
分别根据线段的性质、射线、余角、补角等定义一一判断即可.
【详解】
解:A.两点之间所有的连线中,线段最短,故此选项错误;
B.射线AB和射线BA不是同一条射线,故此选项错误;
C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;
D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;
故选:D
【点睛】
本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.
6、D
【解析】
【分析】
根据B岛在A与C的方位角得出∠ABD=55°,∠CBE=60°,再根据平角性质求出∠ABC即可.
【详解】
解:过点B作南北方向线DE,
∵B岛在A岛南偏西55°方向,
∴∠ABD=55°,
∵B岛在C岛北偏西60°方向,
∴∠CBE=60°,
∴∠ABC=180°-∠ABD-∠CBE=180°-55°-60°=65°.
故选D.
【点睛】
本题考查方位角,平角,角的和差,掌握方位角,平角,角的和差是解题关键.
7、C
【解析】
【分析】
钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,
【详解】
10时整,时针与分针组成的角的度数是30°×2=60°.
故选:C.
【点睛】
本题要在了解钟面结构的基础上进行解答.
8、D
【解析】
【分析】
分别以为端点数线段,从而可得答案.
【详解】
解:图中线段有:
共6条,
故选D
【点睛】
本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.
9、C
【解析】
【分析】
根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.
【详解】
解:,
点A到原点的距离最大,点其次,点最小,
又,
原点的位置是在点、之间且靠近点的地方,
,
故选:.
【点睛】
此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.
10、A
【解析】
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
二、填空题
1、3或7或11
【解析】
【分析】
分三种情况讨论,当在线段上,当在的左边,在线段上,当在的左边,在的右边,再利用线段的和差关系可得答案.
【详解】
解:如图,当在线段上,
,,
如图,当在的左边,在线段上,
,,
如图,当在的左边,在的右边,
,,
故答案为:3或7或11
【点睛】
本题考查的是线段的和差运算,清晰的分类讨论是解本题的关键.
2、105°或75°
【解析】
【分析】
分两种情况:①AB⊥CD,交DC延长线于E,OB交DC延长线于F,②AB⊥CD于G,OA交DC于H求出答案.
【详解】
解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,
∵∠B=45°,∠BEF=90°,
∴∠CFO=∠BFE=45°,
∵∠DCO=60°,
∴∠COF=15°
∴∠AOC=90°+15°=105°;
②如图2,AB⊥CD于G,OA交DC于H,
∵∠A=45°,∠AGH=90°,
∴∠CHO=∠AHG=45°,
∵∠DCO=60°,
∴∠AOC=180°-60°-45°=75°;
故答案为:105°或75°.
【点睛】
此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.
3、
【解析】
【分析】
根据90°-∠α即可求得的值.
【详解】
解:∵∠α与∠β互余,且∠α=35°30′,
∴∠β
故答案为:
【点睛】
本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.
4、165°
【解析】
【分析】
由三角板得∠C=30°,得到∠BAC的度数,利用邻补角关系得到∠1的度数.
【详解】
解:如图,∵∠C=30°,
∴∠BAC=45°-30°=15°,
∴∠1=180°-∠BAC=165°,
故答案为:165°.
【点睛】
此题考查了三角板有关的计算,正确掌握三角板各角的度数及邻补角的定义是解题的关键.
5、<
【解析】
【分析】
先把化为 从而可得答案.
【详解】
解:
而
故答案为:<
【点睛】
本题考查的是角度的大小比较,角的单位换算,掌握“角的60进位制以及大化小用乘法”是解本题的关键.
三、解答题
1、 (1)∠AOD的度数是105°
(2)∠BOC的度数是30°
(3)图中有一条射线平分另外两条射线所夹角时t的值为1或或.
【解析】
【分析】
(1)根据角的和差表示出∠BOC=60°-∠BOD=60°-(∠AOD-90°)=150°-∠AOD,由已知条件可得方程,解方程即可得∠AOD的度数;
(2)根据角平分线的定义得∠AOC=∠COD=60°,∠AOD的度数,根据角的和差可得∠BOD的度数,即可求得∠BOC的度数;
(3)根据题意求出OB与OA重合时,OC与OD也重合,此时停止运动,然后分三种情况讨论即可求解.
(1)
解:∵∠COD=60°,
∴∠BOC=∠COD﹣∠BOD=60°﹣∠BOD,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,
∴∠BOC=60°﹣∠BOD=60°﹣(∠AOD﹣90°)=150°﹣∠AOD,
∵∠BOC=∠AOD,
∴150°﹣∠AOD=∠AOD,
解得:∠AOD=105°,
故∠AOD的度数是105°;
(2)
解:∵OC平分∠AOD,∠COD=60°,
∴∠AOC=∠COD=60°,
∴∠AOD=∠AOC+∠COD=60°+60°=120°,
∴∠BOD=∠AOD﹣∠AOB=120°﹣90°=30°,
∴∠BOC=∠COD﹣∠BOD=60°﹣30°=30°,
故∠BOC的度数是30°;
(3)
解:根据题意,可得:
∠AOD=90°+60°=150°,
∠AOB=90°﹣15°t,
∠AOC=90°+10°t,
当OB与OA重合时,∠AOB=0°,
即0°=90°﹣15°t,解得:t=6,
此时,∠AOC=90°+10°t=90°+10°×6=150°=∠AOD,即OC与OD重合,
∴当OB与OA重合时,OC与OD也重合,此时停止运动,
∴分三种情况讨论:
①当OB平分∠AOD时:
∵∠AOB=∠AOD=×150°=75°,
∴90°﹣15°t=75°,
解得:t=1;
②当OC平分∠BOD时:
∠BOC=∠AOC﹣∠AOB=(90°+10°t)﹣(90°﹣15°t)=25°t,
∠COD=∠AOD﹣∠AOC=150°﹣(90°+10°t)=60°﹣10°t,
解得:t=;
③当OB平分∠AOC时:
由②知,∠BOC=25°t,
∵∠AOB=∠BOC,
∴90°﹣15°t=25°t,
解得:t=.
综上,图中有一条射线平分另外两条射线所夹角时t的值为1或或.
【点睛】
此题主要考查角的计算,角平分线的定义,以及一元一次方程的应用,解题的关键是根据题意找到等量关系求解.
2、 (1)60°
(2)10°
【解析】
【分析】
(1)根据角平分线的定义得∠AOC =2∠AOB,即可求解;
(2)先求出∠COE的度数,再求出∠DOE的度数,最后根据∠COD=∠COE-∠DOE计算即可.
(1)
∠AOB =,OB平分∠AOC
∠AOC =2∠AOB=2=
(2)
∠AOE=,∠AOC =
∠COE=∠AOE-∠AOC=-=
又OD平分∠AOE
∠DOE=∠AOE==70°
∠COD=∠COE-∠DOE=-=
【点睛】
本题主要考查角平分线的定义,掌握角平分线把已知角分成两个相等的角是解题的关键.
3、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线和射线的定义画图即可;
(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;
(1)
如图所示;
(2)
如图所示,
或
【点睛】
本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.
4、 (1)
(2)直线恰好平分锐角,则的值为s或s.
【解析】
【分析】
(1)先利用角平分线的定义求解再利用 从而可得答案;
(2)分两种情况讨论:如图,当直线恰好平分锐角,记为上的点,求解线段旋转的角度如图,当平分时,求解旋转的角度为: 从而可得答案.
(1)
解:平分
(2)
解:如图,当直线恰好平分锐角,记为上的点,
,
如图,当平分时,
此时转的角度为:
综上:直线恰好平分锐角,则的值为s或s.
【点睛】
本题考查的是角平分线的定义,角的和差运算,角的动态定义的理解,清晰的分类讨论是解本题的关键.
5、 (1)见解析
(2)45°
(3)n°
【解析】
【分析】
(1)根据要求画出图形即可;
(2)利用角平分线的定义计算即可;
(3)利用(2)中,结论解决问题即可.
(1)
解:图形如图所示.
,
(2)
解:∵OD平分∠AOC,OE平分∠BOC,
∴∠DOC=∠AOC,∠EOC=∠BOC,
∴∠DOE=(∠AOC+∠BOC)=∠AOB,
∵∠AOB=90°,
∴∠DOE=45°;
(3)
解:当∠AOB为锐角,且∠AOB=n°时,由(2)可知∠DOE=n°.
【点睛】
本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
数学鲁教版 (五四制)第五章 基本平面图形综合与测试课后复习题: 这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试课后复习题,共20页。试卷主要包含了在9,在数轴上,点M,已知与满足,下列式子表示的角,如图所示,B,已知,则∠A的补角等于等内容,欢迎下载使用。
数学鲁教版 (五四制)第五章 基本平面图形综合与测试课堂检测: 这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试课堂检测,共23页。试卷主要包含了已知,则的补角等于,如图,OM平分,,,则等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共22页。试卷主要包含了图中共有线段,如图,一副三角板,下列说法中正确的是等内容,欢迎下载使用。