鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习
展开六年级数学下册第五章基本平面图形定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,,的大小是( )
A. B. C. D.
2、如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )
A.北偏西55° B.北偏东65° C.北偏东35° D.北偏西35°
3、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )
A. B. C. D.
4、如果线段,,那么下面说法中正确的是( )
A.点在线段上 B.点在直线上
C.点在直线外 D.点可能在直线上,也可能在直线外
5、已知,则∠A的补角等于( )
A. B. C. D.
6、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )
A.3cm B.4cm C.5cm D.6cm
7、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
8、如图所示,若,则射线OB表示的方向为( ).
A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°
9、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
10、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、45°30'=_____°.
2、已知,则它的余角是______.
3、如图,C,D,E为线段AB上三点,DE=AB=2,E是DB的中点,AC=CD,则CD的长为_________.
4、将一副三角板如图所示摆放,使其中一个三角板60°角的顶点与另一个三角板的直角顶点重合,若已知,则的度数是__________;
5、西北方向:_________;西南方向:__________;东南方向:__________;东北方向:__________
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知∠AOB=150°,∠AOC=30°,OE是∠AOB内部的一条射线,OF平分∠AOE,且OF在OC的右侧.
(1)若∠COF=25°,求∠EOB的度数;
(2)若∠COF=n°,求∠EOB的度数.(用含n的式子表示)
2、已知∠AOB=120°,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.
(1)若OC平分∠AOB,
①依题意补全图1;
②∠MON的度数为 .
(2)当射线OC绕点O在∠AOB的内部旋转时,∠MON的度数是否改变?若不变,求∠MON的度数;若改变,说明理由.
3、(1)计算:-12+(-3)2
(2)一个角是它的余角的两倍,求这个角
4、如图①.直线上有一点, 过点在直线上方作射线, 将一直角三角板(其中)的直角顶点放在点处, 一条直角边在射线 上, 另一边OA在直线DE的上方,将直角三角形绕着点O按每秒的速度顺时针旋转一周,设旋转时间为t秒.
(1)当直角三角板旋转到图②的伩置时, 射线恰好平分, 此时, 与 之间的数量关系为____________.
(2)若射线的位置保持不变, 且,
①在旋转过程中,是否存在某个时刻,使得射线, 射线, 射线中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出的值; 若不存在, 请说明理由;
②在旋转过程中, 当边与射线相交时, 如图③, 请直接写出的值____________.
5、如图,点为线段上一点,点为的中点,且.求线段的长.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.
【详解】
解:∵∠BAC=60°,∠1=27°20′,
∴∠EAC=32°40′,
∵∠EAD=90°,
∴∠2=90°-∠EAC=90°-32°40′=57°20′;
故选:B.
【点睛】
本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.
2、D
【解析】
【分析】
如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,
即可得到答案.
【详解】
解:假设两船相撞,如同所示,
根据两船的速度相同可得AC=BC,
∴∠CBA=∠CAB=90°-35°=55°,
∴乙的航向不能是北偏西35°,
故选:D.
【点睛】
此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.
3、B
【解析】
【分析】
由图知,∠AOB=180°−+,从而可求得结果.
【详解】
∠AOB=180°−+=180°-37°=143°
故选:B
【点睛】
本题考查了方位角及角的和差运算,掌握角的和差运算是关键.
4、D
【解析】
【分析】
根据,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.
【详解】
解:∵,MA+MB=13cm,
∴点可能在直线上,也可能在直线外,
故选:D.
【点睛】
此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.
5、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
6、B
【解析】
【分析】
设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.
【详解】
解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,
∵M为AB的中点,
∴AM=BM,
即BM=(8﹣x)cm,
∵N为CB的中点,
∴CN=NB,
∴NB,
∴MC+NB=x+(4﹣x)=4(cm),
故选:B.
【点睛】
本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.
7、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
8、A
【解析】
【分析】
根据同角的余角相等即可得,,根据方位角的表示方法即可求解.
【详解】
如图,
即射线OB表示的方向为北偏东35°
故选A
【点睛】
本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.
9、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
10、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
二、填空题
1、45.5
【解析】
【分析】
先将化为度数,然后与整数部分的度数相加即可得.
【详解】
解:
.
故答案为:.
【点睛】
题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.
2、
【解析】
【分析】
根据余角的定义求即可.
【详解】
解:∵,
∴它的余角是90°-=,
故答案为:.
【点睛】
本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.
3、
【解析】
【分析】
根据线段成比例求出,再根据中点的性质求出,即可得出,再根据线段成比例即可求出CD的长.
【详解】
解:DE=AB=2
E是DB的中点
AC=CD
故答案为:.
【点睛】
此题考查了线段长度的问题,解题的关键是掌握线段成比例的性质以及中点的性质.
4、28°28′
【解析】
【分析】
根据∠DAE=90°,,求出∠EAC的度数,再根据∠1=∠BAC −∠EAC即可得出答案.
【详解】
解:∵∠DAE=90°,,
∴∠EAC=31°32′,
∵∠BAC=60°,
∴∠1=∠BAC −∠EAC=60°-31°32′=28°28′,
故答案为:28°28′.
【点睛】
本题主要考查了余角的概念和度分秒的换算,关键是求出∠EAC的度数,是一道基础题.
5、 射线OE 射线OF 射线OG 射线OH
【解析】
略
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)求出,再由角平分线计算求出,结合图形即可求出;
(2)求出,再由角平分线计算求出,结合图形即可求出.
(1)
∵,,
∴,
∵OF平分,
∴,
∵,
∴;
(2)
∵,,
∴,
∵OF平分,
∴,
∵,
∴.
【点睛】
题目主要考查利用角平分线进行角度间的计算,理解题意,找准各角之间的数量关系是解题关键.
2、 (1)①见解析;②80°
(2)∠MON的度数不变,80°
【解析】
【分析】
(1)①根据题意补全图;②根据,∠MOC=∠AOC﹣∠AOM=40°,得出∠MON的度数;
(2)由OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线,得出∠MON=∠AOB﹣(∠AOM+∠BON)=AOB,从而得出答案.
(1)
解:①依题意补全图如下:
②∵OC平分∠AOB,∠AOB=120°,
∴,
∵射线OM是∠AOC靠近OA的三等分线,
∴,
∴∠MOC=∠AOC﹣∠AOM=40°,
同理可得∠CON=40°,
∴∠MON=∠CON+∠MOC=80°;
(2)
解:∠MON的度数不变.
∵OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线,
∵,,
∴∠MON=∠AOB﹣(∠AOM+∠BON)
=∠AOB﹣
=,
∵∠AOB=120°,
∴∠MON=80°.
【点睛】
本题考查了角的计算和角的三等分线,掌握各个角之间的关系是解题的关键.
3、(1)-3;(2)这个角的度数为60°.
【解析】
【分析】
(1)先计算乘方,再计算加减即可;
(2)设这个角的度数为x,然后根据题意列出方程,解方程即可.
【详解】
解:(1)-12+(-3)2
;
(2)设这个角的度数为x,则它的余角为90°-x,
由题可得:,
解得:x=60°,
答:这个角的度数为60°.
【点睛】
本题考查了余角,有理数的混合运算,熟练掌握余角的意义是解题的关键.
4、 (1)
(2)①;②
【解析】
【分析】
(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,利用等角的余角性质得出∠AOC=∠AOD即可;
(2)①存在,根据,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边在射线 上,∠EOB=∠BOC=,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;
②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.
(1)
解:∵OB平分∠COE,
∴∠COB=∠EOB,
∵∠AOB=90°,
∴∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,
∴∠AOC=∠AOD,
故答案为:∠AOC=∠AOD;
(2)
解:①存在,
∵,
∴∠COE=180°-∠COD=180°-120°=60°,
当OB平分∠COE时,直角边在射线 上,
∠EOB=∠BOC=,
则15°t=30°,
∴t=2;
当OC平分∠EOB时,∠BOC=∠EOC=60°,
∴∠EOB=2∠EOC=120°>90°,
∴当OC平分∠EOB时,∠EOB不是锐角舍去,
当OE平分∠BOC时,∠EOB=∠EOC=60°,
∴∠BOC=2∠EOC=120°>90°,
当OE平分∠BOC时,∠BOC不是锐角舍去,
综上,所有满足题意的t的取值为2,
②如图∵∠COD=120°,
当AB与OD相交时,
∵∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,
∴,
故答案为:30°.
【点睛】
本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.
5、14cm
【解析】
【分析】
根据点B为的中点和可求得CD的长,根据图中线段的关系即可求解.
【详解】
解:∵点B是的中点,,
∴,
又∵,
∴.
【点睛】
本题考查了线段的相关知识,解题的关键是根据线段中点的定义正确求解.
初中鲁教版 (五四制)第五章 基本平面图形综合与测试当堂检测题: 这是一份初中鲁教版 (五四制)第五章 基本平面图形综合与测试当堂检测题,共23页。试卷主要包含了下列说法正确的是,如图所示,点E等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习,共24页。试卷主要包含了下列现象,如图,下列说法不正确的是,如图所示,点E,如图,OM平分,,,则等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后测评: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后测评,共22页。试卷主要包含了已知,则的补角的度数为,如图所示,B,如图,OM平分,,,则等内容,欢迎下载使用。