初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题
展开六年级数学下册第五章基本平面图形专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )
A. B. C. D.
2、如图,点A,B在线段EF上,点M,N分别是线段EA,BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长为( )cm
A.10 B.11 C.12 D.13
3、下列说法中正确的是( )
A.两点之间直线最短 B.单项式πx2y的系数是
C.倒数等于本身的数为±1 D.射线是直线的一半
4、下列说法正确的是( )
A.锐角的补角不一定是钝角 B.一个角的补角一定大于这个角
C.直角和它的的补角相等 D.锐角和钝角互补
5、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )
A.4cm B.36cm C.4cm或36cm D.4cm或2cm
6、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( )
A.3 B.4 C.6 D.8
7、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )
A.4 B.5 C.10 D.14
8、如图,D、E顺次为线段上的两点,,C为AD的中点,则下列选项正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
9、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
10、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )
A.10cm B.2cm C.10或2cm D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,延长线段AB到C,使BC=AB,D为线段AC的中点,若DC=3,则AB=______.
2、45°30'=_____°.
3、如图,已知点是直线上的一点,,.
(1)当时,的度数为__________;
(2)当比的余角大,的度数为__________.
4、一种零件的图纸如图所示,若AB=10mm,BC=50mm,CD=20mm,则AD的长为 _____mm.
5、如果∠A=34°,那么∠A的余角的度数为_____°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知∠AOB=150°,∠AOC=30°,OE是∠AOB内部的一条射线,OF平分∠AOE,且OF在OC的右侧.
(1)若∠COF=25°,求∠EOB的度数;
(2)若∠COF=n°,求∠EOB的度数.(用含n的式子表示)
2、如图,平面上有四个点A,B,C,D.
(1)依照下列语句画图:
①直线AB,CD相交于点E;
②在线段BC的延长线上取一点F,使CF=DC.
(2)在四边形ABCD内找一点O,使它到四边形四个顶点的距离的和OA+OB+OC+OD最小,并说出你的理由.
3、如图,是直线上一点,是直角,平分.
(1)若,则__________;
(2)若,求__________(用含的式子表示);
(3)在的内部有一条射线,满足,试确定与的度数之间的关系,并说明理由.
4、如图,,是的平分线,是的平分线.
(1)若,求的度数;
(2)若与互补,求的度数.
5、已知,OB为内部的一条射线.
(1)如图1,若OM平分,ON平分,求的度数;
(2)如图2,在内部,且,OF平分,OG平分(射线OG在射线OC左侧),求的度数;
(3)在(2)的条件下,绕点O运动过程中,若,则的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.
【详解】
解:,
点A到原点的距离最大,点其次,点最小,
又,
原点的位置是在点、之间且靠近点的地方,
,
故选:.
【点睛】
此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.
2、C
【解析】
【分析】
由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.
【详解】
解:∵EA:AB:BF=1:2:3,
可以设EA=x,AB=2x,BF=3x,
而M、N分别为EA、BF的中点,
∴MA=EA=x,NB=BFx,
∴MN=MA+AB+BN=x+2x+x=4x,
∵MN=16cm,
∴4x=8,
∴x=2,
∴EF=EA+AB+BF=6x=12,
∴EF的长为12cm,
故选C.
【点睛】
本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
3、C
【解析】
【分析】
分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.
【详解】
解:A.两点之间线段最短,故不符合题意;
B.单项式πx2y的系数是,不符合题意;
C.倒数等于本身的数为±1,故符合题意;
D.射线是是直线的一部分,故不符合题意;
故选:C.
【点睛】
本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.
4、C
【解析】
【分析】
根据余角和补角的概念判断即可.
【详解】
解:A、因为锐角的补角与锐角之和为180°,所以锐角的补角一定是钝角,所以本说法不符合题意;
B、当这个角为120°时,120°的补角是60°,所以本说法不符合题意;
C、根据直角的补角是直角.所以本说法符合题意;
D、锐角和钝角的度数不确定,不能确定锐角和钝角是否互补,所以本说法不符合题意;
故选:C.
【点睛】
本题考查的是余角和补角的概,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.
5、C
【解析】
【分析】
分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.
【详解】
解:当点D在点B的右侧时,
∵,
∴AB=BD,
∵点C为线段AB的中点,
∴BC=,
∵,
∴,
∴BD=4,
∴AB=4cm;
当点D在点B的左侧时,
∵,
∴AD=,
∵点C为线段AB的中点,
∴AC=BC=,
∵,
∴-=6,
∴AB=36cm,
故选C.
【点睛】
本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.
6、B
【解析】
【分析】
根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.
【详解】
解:E、F分别是线段AC、AB的中点,
AC=2AE=2CE,AB=2AF=2BF,
EF=AE﹣AF=2
2AE﹣2AF=AC﹣AB=2EF=4,
BC=AC﹣AB=4,
故选:B.
【点睛】
本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.
7、C
【解析】
【分析】
设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.
【详解】
∵AC:CD:DB=2:3:4,
∴设AC=2x,CD=3x,DB=4x,
∴AB=9x,
∵AB=18,
∴x=2,
∴AD=2x+3x=5x=10,
故选:C.
【点睛】
本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.
8、D
【解析】
【分析】
先利用中点的含义及线段的和差关系证明再逐一分析即可得到答案.
【详解】
解: C为AD的中点,
,则
故A不符合题意;
,则
同理: 故B不符合题意;
,则
同理: 故C不符合题意;
,则
同理: 故D符合题意;
故选D
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明”是解本题的关键
9、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
10、C
【解析】
【分析】
分AC=AB+BC和AC=AB-BC,两种情况求解.
【详解】
∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,
当AC=AB+BC时,
AC=6+4=10;
当AC=AB-BC时,
AC=6-4=2;
∴AC的长为10或2cm
故选C.
【点睛】
本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.
二、填空题
1、4
【解析】
【分析】
根据线段中点的性质,可得AC的长,再根据题目已知条件找到BC和AC之间的关系,用AC减去BC就得AB的长度
【详解】
解:由D为AC的中点,得
AC=2DC
=2×3
=6
又∵BC=AB,AC=AB+BC.
∴ BC=AC
=×6
=2
由线段的和差关系,得
AB=AC-BC
=6-2
=4
故答案为:4.
【点睛】
本题先根据线段中点的定义求出有关线段的长,再根据线段之间倍数关系,列出求解所求线段的式子即可.
2、45.5
【解析】
【分析】
先将化为度数,然后与整数部分的度数相加即可得.
【详解】
解:
.
故答案为:.
【点睛】
题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.
3、 45° 20°
【解析】
【分析】
(1)根据∠COA=∠AOE-∠COE求解即可;
(2)设∠BOE=x,则∠BOE的余角为90°-x,然后求出∠COF和∠AOC,继而得到∠AOF=50°,再根据求得∠AOE和∠BOE,根据∠COF=∠COE-∠FOE即可求解.
【详解】
解:(1)∵∠BOE=15°,
∴∠AOE=165°,
∵∠COE=120°,
∴∠COA=∠AOE-∠COE =45°,
故答案为:45°;
(2)设∠BOE=x,
则∠BOE的余角为90°-x,
∵∠FOE比∠B0E的余角大40°,
∴∠FOE=90°-x+40°=130°-x,
∵∠COE=120°,
∴∠COF=∠COE-∠FOE=120°-(130°-x)=x-10°,
∠AOC=180°-∠COE-∠BOE=180°-120°-x=60°-x,
∴∠AOF=∠AOC+∠COF=(60°-x)+(x-10°)=50°,
∵,
∴∠AOE=3∠AOF=150°,
∴∠BOE=180°-∠AOE=180°-150°=30°,即x=30°,
∴∠COF=∠COE-∠FOE= x-10°=30°-10°=20°
故答案为:20°.
【点睛】
本题考查余角、补角的计算,解题的关键是熟知相关知识点.
4、80
【解析】
【分析】
根据AD=AB+BC+CD即可得答案.
【详解】
解:由图可知:AD=AB+BC+CD=10+50+20=80(mm).
故答案为:80.
【点睛】
本题考查了线段的和差,掌握连接两点间的线段长叫两点间的距离是解本题的关键.
5、56
【解析】
【分析】
根据余角的定义即可求得.
【详解】
解:∠A的余角为90°−∠A=90°−34°=56°
故答案为:56
【点睛】
本题考查了余角的定义,掌握余角的定义是关键,这是基础题.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)求出,再由角平分线计算求出,结合图形即可求出;
(2)求出,再由角平分线计算求出,结合图形即可求出.
(1)
∵,,
∴,
∵OF平分,
∴,
∵,
∴;
(2)
∵,,
∴,
∵OF平分,
∴,
∵,
∴.
【点睛】
题目主要考查利用角平分线进行角度间的计算,理解题意,找准各角之间的数量关系是解题关键.
2、 (1)①作图见详解;②作图见详解
(2)作图见详解;理由见详解
【解析】
(1)
① 解:如图所示E即为所求做点,
② 如图所示,F点即为所求做点,
(2)
解:如图连接线段AC,线段BD,两线段交于点O,此时OA+OB+OC+OD最小,
理由如下:
要求OA+OB+OC+OD,就是求(OA +OC)+(OB +OD)最小,也就是求OA +OC最小,OB +OD最小,
当O,A,C,三点在同一直线上时OA +OC最小,
当O,B,D,三点在同一直线上时OB +OD最小,
故直接连接线段AC,线段BD所交得点为所求作的点.
【点睛】
本题考查尺规作图,以及直线,线段,射线的定义等知识,能够理解直线,射线,线段的定义是关键.
3、 (1)30°
(2)
(3)5∠DOE-7∠AOF=270°
【解析】
【分析】
(1)先根据∠DOB与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE;
(2)先根据∠AOC与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE,再根据∠DOE与∠COE的互余关系即可得出答案;
(3)结合(2)把所给等式整理为只含所求角的关系式即可.
(1)
解:∵∠COD是直角,∠BOD=30°,
∴∠BOC=90°-∠BOD=60°,
∵OE平分∠BOC,
∴∠COE=30°,
(2)
∵,
∴,
∵OE平分∠BOC,
∴∠COE=∠BOE,
∵∠COD是直角,
∴∠DOE=90°-∠COE=,
(3)
∵
∴6∠AOF+3∠BOE=∠AOC-∠AOF,
∴7∠AOF+3∠BOE=∠AOC,
∵∠COD是直角,OE平分∠BOC,
∴∠BOE=90°-∠DOE,
由(2)可知,∠AOC=2∠DOE
∴7∠AOF+3(90°-∠DOE)=2∠DOE
∴7∠AOF+270°=5∠DOE,
∴5∠DOE-7∠AOF=270°.
【点睛】
本题考查角的计算;根据所求角的组成进行分析是解决本题的关键;应用相应的桥梁进行求解是常用的解题方法;注意应用题中已求得的条件.
4、 (1)50°
(2)60°
5、 (1)80°;
(2)70°
(3)42°或
【解析】
【分析】
(1)根据角平分线的性质证得,即可得到答案;
(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分,求出,即可求出的度数;
(3)分两种情况:①当OF在OB右侧时,由,,求得∠COF的度数,利用OF平分,得到∠AOC的度数,得到∠BOD的度数,根据OG平分,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.
(1)
解:∵OM平分,ON平分,
∴,
∴=;
(2)
解:设∠BOF=x,
∵,
∴∠COF=20°+x,
∵OF平分,
∴∠AOC=2∠COF=40°+2x,
∴∠COD=∠AOD-∠AOC=140°-2x,
∵OG平分,
∴,
∴=;
(3)
解:当OF在OB右侧时,如图,
∵,,
∴∠COF=28°,
∵OF平分,
∴∠AOC=2∠COF=56°,
∴∠COD=∠AOD-∠AOC=104°,
∴∠BOD=124°,
∵OG平分,
∴,
∴=.
当OF在OB左侧时,如图,
∵,,
∴∠COF=12°,
∵OF平分,
∴∠AOC=2∠COF=24°,
∴∠COD=∠AOD-∠AOC=136°,
∴∠BOD=156°,
∵OG平分,
∴,
∴=.
∴的度数为42°或.
【点睛】
此题考查了几何图形中角度的计算,角平分线的性质,正确掌握角平分线的性质及图形中各角度之间的位置关系进行计算是解题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共22页。试卷主要包含了上午10等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀测试题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀测试题,共23页。试卷主要包含了在数轴上,点M,下列两个生活等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后测评: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后测评,共22页。试卷主要包含了若,则的补角的度数为,如图,OM平分,,,则,已知与满足,下列式子表示的角等内容,欢迎下载使用。