初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀单元测试练习题
展开六年级数学下册第五章基本平面图形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④ B.①③ C.②④ D.③④
2、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
3、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )
A.两点确定一条直线 B.两点之间,线段最短
C.射线只有一个端点 D.过一点有无数条直线
4、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )
A.①② B.①③ C.②④ D.③④
5、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A. B. C. D.
6、如图,点N为线段AM上一点,线段.第一次操作:分别取线段AM和AN的中点,;第二次操作:分别取线段和的中点,;第三次操作:分别取线段和的中点,;……连续这样操作,则第十次操作所取两个中点形成的线段的长度为( )
A. B. C. D.
7、如图所示,下列表示角的方法错误的是( )
A.∠1与∠AOB表示同一个角
B.图中共有三个角:∠AOB,∠AOC,∠BOC
C.∠β+∠AOB=∠AOC
D.∠AOC也可用∠O来表示
8、如果线段,,那么下面说法中正确的是( )
A.点在线段上 B.点在直线上
C.点在直线外 D.点可能在直线上,也可能在直线外
9、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )
A.直线外一点与直线上点之间的连线段有无数条 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段最短
10、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )
A.5 B.6 C.7 D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个圆的周长是31.4cm,它的半径是_____cm,面积是_____cm2.
2、冬至是地球赤道以北地区白昼最短、黑夜最长的一天,在苏州有“冬至大如年”的说法.苏州冬至日正午太阳高度角是,的余角为__________.
3、已知∠α=,则∠α的余角的度数是_____.
4、如图,将三个形状、大小完全一样的正方形的一个顶点重合放置,若,,则_____.
5、若一个角度数是115°6′,则这个角的补角是___________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,射线表示的方向是北偏东,射线表示的方向是北偏东,已知图中.
(1)求∠AOB的度数;
(2)写出射线OC的方向.
2、如图,将两块三角板的直角顶点重合.
(1)写出以C为顶点相等的角;
(2)若∠ACB=150°,求∠DCE的度数.
3、如图,点为线段上一点,点为的中点,且.求线段的长.
4、如图,C为线段AD上一点,B为CD的中点,,.
(1)图中共有______条线段;
(2)求AC的长;
(3)若点E是线段AC中点,求BE的长.
(4)若点F在线段AD上,且cm,求BF的长.
5、已知线段a、b(如图),用直尺和圆规在方框内按以下步骤作图:(保留作图痕迹,不要求写出作法和结论)
①画射线OP;
②在射线OP上顺次截取OA=a,AB=a;
③在线段OB上截取BC=b;
④作出线段OC的中点D.
(1)根据以上作图可知线段OC= ;(用含有a、b的式子表示)
(2)如果OD=2厘米,CD=2AC,那么线段BC= 厘米.
-参考答案-
一、单选题
1、C
【解析】
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
2、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
3、A
【解析】
【分析】
两个学生看成点,根据两点确定一条直线的知识解释即可.
【详解】
∵两点确定一条直线,
∴选A.
【点睛】
本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.
4、B
【解析】
【分析】
将每项加上判断结果是否等于90°即可.
【详解】
解:①∵+=90°,故该项是的余角;
②∵,
∴,
∴+=90°+,故该项不是的余角;
③∵,
∴+=90°,故该项是的余角;
④∵,
∴+=120°,故该项不是的余角;
故选:B.
【点睛】
此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.
5、D
【解析】
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
6、A
【解析】
【分析】
根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,再由M2N2的长度求出M2N2的长度,从而找到规律,即可求出MnNn的结果.
【详解】
解:∵线段MN=20,线段AM和AN的中点M1,N1,
∴M1N1=AM1-AN1
∵线段AM1和AN1的中点M2,N2;
∴M2N2=AM2-AN2
∵线段AM2和AN2的中点M3,N3;
∴M3N3=AM3-AN3
.......
∴
∴
故选:A.
【点睛】
本题考查了与线段中点有关的线段的和差,根据线段中点的定义得出是解题关键.
7、D
【解析】
【分析】
根据角的表示方法表示各个角,再判断即可.
【详解】
解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;
B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;
C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;
D、∠AOC不能用∠O表示,错误,故本选项符合题意;
故选:D.
【点睛】
本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.
8、D
【解析】
【分析】
根据,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.
【详解】
解:∵,MA+MB=13cm,
∴点可能在直线上,也可能在直线外,
故选:D.
【点睛】
此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.
9、D
【解析】
【分析】
根据题意可知,原因为两点之间线段最短,据此分析即可
【详解】
解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短
故选D
【点睛】
本题考查了线段的性质,掌握两点之间线段最短是解题的关键.
10、C
【解析】
【分析】
根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.
【详解】
解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,
而题目中从一个顶点引出4条对角线,
∴n-3=4,得到n=7,
∴这个多边形的边数是7.
故选:C.
【点睛】
本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.
二、填空题
1、 5 78.5
【解析】
【分析】
设圆的半径为.先利用圆的周长公式求出,再利用圆的面积公式即可得.
【详解】
解:设圆的半径为,
由题意得:,
解得,
则圆的面积为,
故答案为:5,78.5.
【点睛】
本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.
2、
【解析】
【分析】
两个角的和为直角,则称这两个角互为余角,简称互余,根据余角的概念即可求得结果.
【详解】
故答案为:
【点睛】
本题主要考查了余角的计算,掌握余角的概念是关键.
3、
【解析】
【分析】
根据90度减去即可求解.
【详解】
解:∠α=,则∠α的余角的度数是
故答案为:
【点睛】
本题考查了角度的计算,求一个角的余角,掌握角度的计算是解题的关键.
4、
【解析】
【分析】
首先求得和∠EAC,然后根据即可求解.
【详解】
解:∵将三个形状、大小完全一样的正方形的一个顶点重合放置,
∠GAD=∠EAB=90°,
,,
∴
∴
故答案为:
【点睛】
本题考查的是角的和差关系,角度的加法运算,掌握“角的和差关系与角度的加法运算”是解本题的关键.
5、64°54'
【解析】
【分析】
根据补角的定义(若两个角之和为,则这两个角互为补角)进行求解即可得.
【详解】
解:,
故答案为:.
【点睛】
题目主要考查补角的定义,理解补角的定义是解题关键.
三、解答题
1、 (1)
(2)北偏西
【解析】
【分析】
(1)根据方向角的定义,结合图形中角的和差关系得出答案;
(2)根据角的和差关系求出即可.
(1)
解:如图,
射线表示的方向是北偏东,即,
射线表示的方向是北偏东,即,
,
即;
(2)
解:,,
,
,
,
射线的方向为北偏西.
【点睛】
本题考查方向角,解题的关键是理解方向角的定义以及角的和差关系.
2、 (1)∠ACE=∠BCD,∠ACD=∠ECB
(2)30°
【解析】
【分析】
(1)根据余角的性质即可得到结论;
(2)根据角的和差即可得到结论.
(1)
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE=∠BCD+∠DCE=90°,
∴∠ACE=∠BCD;∠ACD=∠ECB=90°
(2)
∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°.
∴∠DCE=90°-∠ACE=90°-60°=30°
【点睛】
本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
3、14cm
【解析】
【分析】
根据点B为的中点和可求得CD的长,根据图中线段的关系即可求解.
【详解】
解:∵点B是的中点,,
∴,
又∵,
∴.
【点睛】
本题考查了线段的相关知识,解题的关键是根据线段中点的定义正确求解.
4、 (1)6
(2)8 cm
(3)6 cm
(4)5 cm或1 cm
【解析】
【分析】
(1)根据线段的定义,写出所有线段即可;
(2)根据为的中点可得,进而根据即可求解;
(3)点E是线段AC中点,则,根据即可求解;
(4)根据题意,根据点在点的左侧和右侧两种情形分类讨论,进而根据线段的和差关系求解即可.
(1)
解:图中的线段有共6条
故答案为:6
(2)
为的中点,
cm
(3)
点E是线段AC中点,则,
cm
(4)
若点F在线段AD上,,
则分两种情况讨论
①当在点的左侧时,
cm,
BF cm,
②当在点的右侧时,
cm,
BF
【点睛】
本题考查了线段的数量问题,线段的和差计算,线段中点的性质,数形结合是解题的关键.
5、 (1)作图见解答,
(2)6
【解析】
【分析】
利用基本作图画出对应的几何图形,(1)根据线段的和差得到;(2)先利用点为的中点得到厘米,则厘米,然后利用进行计算.
(1)
解:如图,
;
故答案为:;
(2)
解:点为的中点,
厘米,
,
厘米,
(厘米);
故答案为:6.
【点睛】
本题考查了作图复杂作图,两点间的距离,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.
鲁教版 (五四制)第五章 基本平面图形综合与测试单元测试测试题: 这是一份鲁教版 (五四制)第五章 基本平面图形综合与测试单元测试测试题,共24页。试卷主要包含了如图,OM平分,,,则,已知与满足,下列式子表示的角等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试单元测试课后作业题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试单元测试课后作业题,共25页。试卷主要包含了已知,则的补角的度数为等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步达标检测题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步达标检测题,共23页。