![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形重点解析试题(含详解)01](http://img-preview.51jiaoxi.com/2/3/12733871/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形重点解析试题(含详解)02](http://img-preview.51jiaoxi.com/2/3/12733871/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形重点解析试题(含详解)03](http://img-preview.51jiaoxi.com/2/3/12733871/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学鲁教版 (五四制)第五章 基本平面图形综合与测试优秀达标测试
展开六年级数学下册第五章基本平面图形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
2、图中共有线段( )
A.3条 B.4条 C.5条 D.6条
3、若的补角是,则的余角是( )
A. B. C. D.
4、把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是( )
A.两点确定一条直线 B.两点之间,线段最短
C.两点之间,直线最短 D.线段比直线短
5、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )
A.1个 B.2个 C.3个 D.4个
6、如图,C为线段上一点,点D为的中点,且,.则的长为( ).
A.18 B.18.5 C.20 D.20.5
7、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠BOC=20°,则∠AOD等于( )
A.160° B.140° C.130° D.110°
8、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
9、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )
A. B.
C. D.
10、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )
A.一对 B.二对 C.三对 D.四对
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知线段AC,点D为AC的中点,B是直线AC的一点,且,,则______.
2、已知点C是线段AB的三等分点,点D是线段AC的中点.若线段,则______.
3、点A,B,C在同一条直线上,,.则____________.
4、冬至是地球赤道以北地区白昼最短、黑夜最长的一天,在苏州有“冬至大如年”的说法.苏州冬至日正午太阳高度角是,的余角为__________.
5、点A、B、C三点在同一条直线上,AB=10cm,BC=6cm,则AC =___ cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知平面上三个点A,B,C,按要求完成下列作图(不写作法,只保留作图痕迹):
(1)作直线AC,射线BA;
(2)连接BC.并延长BC至点D,使CD=BC.
2、已知线段a,b,点A,P位置如图所示.
(1)画射线AP,请用圆规在射线AP上截取AB=a,BC=b;(保留作图痕迹,不写作法)
(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长.
3、已知:点C、D、E在直线AB上,且点D是线段AC的中点,点E是线段DB的中点,若点C在线段EB上,且DB=6,CE=1,求线段AB的长.
4、如图,射线表示的方向是北偏东,射线表示的方向是北偏东,已知图中.
(1)求∠AOB的度数;
(2)写出射线OC的方向.
5、如图,将两块三角板的直角顶点重合.
(1)写出以C为顶点相等的角;
(2)若∠ACB=150°,求∠DCE的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
2、D
【解析】
【分析】
分别以为端点数线段,从而可得答案.
【详解】
解:图中线段有:
共6条,
故选D
【点睛】
本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.
3、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
4、B
【解析】
【分析】
由把弯曲的河道改直,就缩短了河道的长度,涉及的知识点与距离相关,从而可以两点之间,线段最短来解析.
【详解】
解:把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是
两点之间,线段最短.
故选:B
【点睛】
本题考查的是两点之间,线段最短,掌握“利用两点之间线段最短解析生活现象”是解本题的关键.
5、A
【解析】
【分析】
根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.
【详解】
解:①射线AB和射线BA表示不是同一条射线,故此说法错误;
②两点之间,线段最短,故此说法正确;
③38°15'≠38.15°,故此说法错误;
④直线不能度量,所以“画直线AB=3cm”说法是错误的;
⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;
综上所述,正确的是②,
故选:A.
【点睛】
本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.
6、C
【解析】
【分析】
根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.
【详解】
解:由点D为BC的中点,得
BC=2CD=2BD,
由线段的和差,得
AB=AC+BC,即4CD+2CD=30,
解得CD=5,
AC=4CD=4×5=20cm,
故选:C;
【点睛】
本题考查了两点间的距离,利用了线段中点的性质,线段的和差.
7、A
【解析】
【分析】
如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.
【详解】
解:∵∠AOB=∠COD=90°,∠BOC=20°,
∴∠AOD=∠AOB+∠COD-∠BOC=90°+90°-20°=160°.
故选:A.
【点睛】
此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.
8、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
9、B
【解析】
【分析】
根据两点之间线段最短,对四个选项中的路线作比较即可.
【详解】
解:四个选项均为从A→C然后去B
由两点之间线段最短可知,由C到B的连线是最短的
由于F在CB线上,故可知A→C→F→B是最近的路线
故选B.
【点睛】
本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.
10、C
【解析】
【分析】
根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.
【详解】
解:∵∠BOC=90°,∠COD=45°,
∴∠AOC=90°,∠BOD=45°,∠AOD=135°,
∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,
∴图中互为补角的角共有3对,
故选:C.
【点睛】
本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.
二、填空题
1、2cm或8cm##8cm或2cm
【解析】
【分析】
根据题意,,则不可能在的左侧,则分两种情况讨论,①当点在线段上时,②当点在点的右侧时,根据线段中点的性质以及线段和差关系列方程求解即可.
【详解】
①当点在线段上时,如图,
,,
即
解得
②当点在点的右侧时,如图,
,,
即
解得
综上所述,或
故答案为:2cm或8cm
【点睛】
本题考查了线段中点的性质,线段和差的计算,分类讨论,数形结合是解题的关键.
2、12或6##6或12
【解析】
【分析】
根据点C是线段AB上的三等分点,分两种情况画图进行计算即可.
【详解】
解:如图,
∵点C是线段AB上的三等分点,
∴AB=3AC,
∵D是线段AC的中点,
∴AC=2AD=4,
∴AB=3×4=12;
如图,
∵D是线段AC的中点,
∴AC=2AD=4,
∵点C是线段AB上的三等分点,
∴BC=AC=2,AB=3BC,
∴AB=3AC=6,
则AB的长为12或6.
故答案为:12或6.
【点睛】
本题考查了两点间的距离,解决本题的关键是分两种情况画图计算.
3、4cm或2cm##2cm或4cm
【解析】
【分析】
考虑到A、B、C三点之间的位置关系不确定,需要分成三种情况进行讨论:①当点C在线段AB上时;②当点C在线段AB的延长线上时;③当点C在线段BA的延长线上时;根据题意画出的图形进行解答即可.
【详解】
解:①当点C在线段AB上时,如图所示:,
又∵,,
∴;
②当点C在线段AB的延长线上时,如图所示:,
又∵,,
∴.
③当点C在线段BA的延长线上时,
∵,,
∴这种情况不成立,舍去;
∴线段或.
故答案为:或.
【点睛】
本题考查了线段间的和差及分类讨论思想,理解题意,作出相应图形进行求解是解题关键.
4、
【解析】
【分析】
两个角的和为直角,则称这两个角互为余角,简称互余,根据余角的概念即可求得结果.
【详解】
故答案为:
【点睛】
本题主要考查了余角的计算,掌握余角的概念是关键.
5、16或4##4或16
【解析】
【分析】
分两种情况讨论,当在的右边时,当在的左边时,再结合线段的和差可得答案.
【详解】
解:如图,当在的右边时,AB=10cm,BC=6cm,
cm,
如图,当在的左边时,AB=10cm,BC=6cm,
cm,
故答案为:16或4
【点睛】
本题考查的是线段的和差关系,利用C的位置进行分类讨论是解本题的关键.
三、解答题
1、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线、射线的定义画图即可;
(2)在BC的延长线上截取CD=BC即可.
(1)
解:如图,直线AC,射线BA即为所作;
(2)
解:如图,线段CD即为所作.
【点睛】
本题考查了直线、射线、线段的作图,熟练掌握作一条线段等于已知线段是解答本题的关键.
2、 (1)见解析
(2)3或1
【解析】
【分析】
先根据射线的定义,画出射线AP,然后分两种情况:当点C位于点B右侧时,当点C位于点B左侧时,即可求解;
(2)根据M,N分别为AB,BC的中点,可得 ,即可求解.
(1)
解:根据题意画出图形,
当点C位于点B右侧时,如下图:
射线AP、线段AB、线段BC即为所求;
当点C位于点B左侧时,如下图:
(2)
解: ∵M,N分别为AB,BC的中点,
∴ ,
∵a=4,b=2,
∴ ,
当点C位于点B右侧时,MN=BM+BN=3;
当点C位于点B左侧时,MN=BM-BN=1;
综上所述,线段MN的长为3或1.
【点睛】
本题主要考查了射线的定义,尺规作图——作一条线段等于已知线段,有关中点的计算,熟练掌握射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;作一条线段等于已知线段的作法是解题的关键.
3、线段的长为10
【解析】
【分析】
由题意知, ,,,将各值代入计算即可.
【详解】
解:∵点E是线段的中点,且
∴
∵
∴
∵点D是线段的中点
∴
∴.
【点睛】
本题考查了线段的中点.解题的关键在于正确的表示线段的数量关系.
4、 (1)
(2)北偏西
【解析】
【分析】
(1)根据方向角的定义,结合图形中角的和差关系得出答案;
(2)根据角的和差关系求出即可.
(1)
解:如图,
射线表示的方向是北偏东,即,
射线表示的方向是北偏东,即,
,
即;
(2)
解:,,
,
,
,
射线的方向为北偏西.
【点睛】
本题考查方向角,解题的关键是理解方向角的定义以及角的和差关系.
5、 (1)∠ACE=∠BCD,∠ACD=∠ECB
(2)30°
【解析】
【分析】
(1)根据余角的性质即可得到结论;
(2)根据角的和差即可得到结论.
(1)
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE=∠BCD+∠DCE=90°,
∴∠ACE=∠BCD;∠ACD=∠ECB=90°
(2)
∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°.
∴∠DCE=90°-∠ACE=90°-60°=30°
【点睛】
本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
数学六年级下册第五章 基本平面图形综合与测试同步测试题: 这是一份数学六年级下册第五章 基本平面图形综合与测试同步测试题,共26页。试卷主要包含了已知,则∠A的补角等于,如图所示,点E等内容,欢迎下载使用。
数学鲁教版 (五四制)第五章 基本平面图形综合与测试精练: 这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试精练,共24页。试卷主要包含了上午8等内容,欢迎下载使用。
数学第五章 基本平面图形综合与测试课时练习: 这是一份数学第五章 基本平面图形综合与测试课时练习,共22页。试卷主要包含了如图,D,已知,则的补角等于等内容,欢迎下载使用。