![2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数章节训练试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12706213/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数章节训练试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12706213/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数章节训练试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12706213/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测
展开
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了下列实数比较大小正确的是,以下正方形的边长是无理数的是,下列运算正确的是,下列等式正确的是.等内容,欢迎下载使用。
七年级数学第二学期第十二章实数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身2、若,则整数a的值不可能为( )A.2 B.3 C.4 D.53、下列各数中,最小的数是( )A.0 B. C. D.﹣34、下列实数比较大小正确的是( )A. B. C. D.5、以下正方形的边长是无理数的是( )A.面积为9的正方形 B.面积为49的正方形C.面积为8的正方形 D.面积为25的正方形6、在﹣3,0,2,这组数中,最小的数是( )A. B.﹣3 C.0 D.27、下列运算正确的是( )A. B. C. D.8、下列等式正确的是( ).A. B. C. D.9、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )A.0个 B.1个 C.2个 D.3个10、4的平方根是( )A.±2 B.﹣2 C.2 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、的平方根是__.2、比较大小:_____﹣(填“<”或“=”或“>”).3、如图,A,B,C在数轴上对应的点分别为a,﹣1,,其中a<﹣1,且AB=BC,则|a|=_____.4、若,且a,b是两个连续的整数,则的值为______.5、对于有理数定义一种新运算:,如,则的值为_____________.三、解答题(10小题,每小题5分,共计50分)1、求下列各式中的x:(1);(2).2、计算:3、计算下列各题:(1);(2).(3).4、已知a、b互为倒数,c、d互为相反数,求-+(c+d)2+1的值.5、求下列各式中x的值.(1)(x-3)3=4(2)9(x+2)2=166、计算(1);(2)7、(1)计算:(﹣)×(﹣1)2021+﹣;(2)求x的值:(3x+2)3﹣1=.8、已知a,b,c,d是有理数,对于任意,我们规定:.例如:.根据上述规定解决下列问题:(1)_________;(2)若,求的值;(3)已知,其中是小于10的正整数,若x是整数,求的值.9、若与互为相反数,且x≠0,y≠0,求的值.10、已知一个正数x的平方根是a+3和2a-15,求a和x的值 -参考答案-一、单选题1、A【分析】根据平方根的定义及算术平方根的定义解答.【详解】解:A、是的平方根,故该项符合题意;B、4是的算术平方根,故该项不符合题意;C、2是4的算术平方根,故该项不符合题意;D、1的平方根是,故该项不符合题意;故选:A.【点睛】此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.2、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可.【详解】解:∵,即,,即,又∵,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.3、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:,所给的各数中,最小的数是.故选:C.【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4、D【分析】根据有理数比较大小的法则对各选项进行比较即可.【详解】解:A、1>-4,故本选项错误;B、-1000<-0.001,故本选项错误;C、,故本选项错误;D、,故本选项正确;故选:D.【点睛】本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.5、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8的正方形的边长为,是无理数,故本选项符合题意;D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.故选:C.【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.6、B【分析】先确定3与的大小,再确定四个数的大小顺序,由此得到答案.【详解】解:∵9>7,∴3>,∴-3<,∴-3<<0<2,故选:B.【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.7、B【分析】根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可.【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B.【点睛】本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键.8、由不等式的性质可知:5-2<−2<6-2,即3<−2<故选:C.【点睛】本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.4.C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A、,故此选项错误;B、,故此选项错误;C、由B得此选项正确;D、,故此选项错误.故选:C.【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.9、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.故选:D.【点睛】此题考查了无理数.解题的关键是掌握实数的分类.10、A【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.【详解】解:∵∴4的平方根是,故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.二、填空题1、【分析】根据平方的运算,可得,即可求解【详解】解:∵,的平方根是,故答案为:【点睛】本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键.2、>【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】解: 而 故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键.3、【分析】先根据数轴上点的位置求出,即可得到,由此求解即可.【详解】解:∵A,B,C在数轴上对应的点分别为a,﹣1, ,∴,∴,∴,∴,故答案为:.【点睛】本题主要考查了实数与数轴,解题的关键在于能够根据题意求出.4、7【分析】先判断出的取值范围,确定a和b的值,即可求解.【详解】解:∵,∴a=3,b=4,∴a+b=7.故答案为:7.【点睛】本题考查了无理数的估算,正确估算出的取值范围是解题关键.5、##【分析】根据新定义运算的规律,先计算,所得的结果再与(-1)进行“”运算.【详解】解:由题意得,,故答案为:.【点睛】本题考查新定义、有理数的混合运算等知识,是重要考点,掌握相关知识是解题关键.三、解答题1、(1);(2)【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值.【详解】(1)等式两边同时除以2得:,两边开平方得:;(2)两边开立方得:,等式两边同时减去1得:.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.2、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.3、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.(1)解:原式;(2)解:原式;(3)解:.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a≠0),(a≠0),牢记法则是解题关键.4、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.【详解】解:根据题意得:ab=1,c+d=0,则-+(c+d)2+1的值=-1+0+1=0.【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.5、(1)x=5;(2)x=-或x=.【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值.【详解】解:(1) (x−3)3=4,(x-3)3=8,x-3=2,∴x=5;(2)9(x+2)2=16,(x+2)2=,x+2=,∴x=-或x=.【点睛】本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6、(1)1;(2).【分析】(1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;(2)先立方根,零指数幂,绝对值化简,去括号合并即可.【详解】解:(1),=,=1;(2),=,=.【点睛】本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键.7、(1);(2).【分析】(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;(2)利用立方根解方程即可得.【详解】解:(1)原式;(2),,,,,.【点睛】本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.8、(1)-5(2)(3)k=1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.(1)解:;(2)解:即:(3)解:,即:因为是小于10的正整数且x是整数,所以k=1时,x=3;k=4时,x=4;k=7时,x=5.所以k=1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.9、【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】由题意可得:,即,∴,∴.【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.10、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,∴,解得,所以.【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.
相关试卷
这是一份初中数学第十二章 实数综合与测试课堂检测,共20页。试卷主要包含了在以下实数,观察下列算式,在下列四个实数中,最大的数是,估计的值在等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试习题,共19页。试卷主要包含了下列各数中,最小的数是,关于的叙述,错误的是,下列说法中正确的有,下列说法正确的是,观察下列算式等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共18页。试卷主要包含了下列运算正确的是,下列等式正确的是.,已知a=,b=-|-|,c=,下列说法中正确的有,10的算术平方根是,下列说法不正确的是等内容,欢迎下载使用。