北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评
展开
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共24页。
京改版八年级数学下册第十七章方差与频数分布同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是( )A.甲 B.乙 C.丙 D.丁2、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在82.5kg及以上的生猪有( )A.20头 B.50头 C.140头 D.200头3、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )甲26778乙23488A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差4、在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是( )A.调查的方式是普查B.该街道约有18%的成年人吸烟C.该街道只有820个成年人不吸烟D.样本是180个吸烟的成年人5、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )A.众数是 B.中位数是 C.平均数是 D.方差是6、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A.众数 B.中位数 C.平均数 D.方差7、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A.平均数 B.中位数 C.方差 D.众数8、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.下图是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( ) A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为9、某校随机抽查了10名学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12322下列说法正确的是( )A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分10、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:=13,=15:==3.6,==6.3.则麦苗又高又整齐的是( )A.甲 B.乙 C.丙 D.丁第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明想知道一碗芝麻有多少粒,于是就从中取出粒涂上黑色,然后放入碗中充分搅拌后再随意取出粒,其中有粒是黑色芝麻,因此可以估算这碗芝麻有________粒.2、某科研小组为了考查A区域河流中野生鱼的数量,从中捕捞200条,作上标记后,放回河中,经过一段充足的时间后,再从中抽捞出300条,发现有标记的鱼有15条,则估计A区域河流中野生鱼有____条.3、阅读下列材料:为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下:甲76849086818786828583乙82848589798091897479回答下列问题:(1)甲成绩的平均数是_______,乙成绩的平均数是_______.(2)经计算知,这表明______(用简明的文字语言表述).(3)你认为选谁去参加比赛更合适?________,理由是_________.4、已知一组数据:2,3,4,5,6,则这组数据的标准差是 __.5、甲、乙两名同学进行跳高测试,每人跳10次,他们的平均成绩都是1.55米,方差分别是,,则在本次测试中__________同学的成绩更稳定.(填“甲”或“乙”)三、解答题(5小题,每小题10分,共计50分)1、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段频数百分比80≤x<85a20%85≤x<9080b90≤x<956030%95≤x<10020 根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a ,b ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.2、民以食为天,农产品是关系国计民生的重要商品,是事关经济发展、社会稳定和国家自立的头等大事,某数学兴趣小组为了解我国近几年人均主要农产品产量情况,该组成员通过对我国粮食、猪羊牛肉的人均产量进行收集、整理、描述和分析,下面给出部分信息.信息一、2005﹣2019年我国人均粮食产量统计图:信息二、将2005﹣2019年划分为三个时间段,每个时间段内我国人均粮食产量如下:时间段2005﹣20092010﹣20142015﹣2019平均数/千克388.4448.4477信息三、2019年我国各省、市、自治区粮食、猪羊牛肉的人均产量的统计量如下:统计量类别平均数中位数极差人均粮食产量/千克4754191981人均猪羊牛肉产量/千克4042.591.5(以上数据来源于《2020中国统计年鉴》)根据以上信息,解决下列问题:(1)2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,甘肃省这两项主要农产品产量排名更靠前的是_________(填“人均粮食产量”或“人均猪羊牛肉产量”),理由是:_________.(2)根据以上数据信息分析,判断下列结论正确的是_________;(只填序号)①2005﹣2015年内我国人均粮食产量呈现持续增长趋势;②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;③2005﹣2019年我国人均粮食产量连续12年高于人均400千克的国际粮食安全标准线.(3)记我国2005﹣2009年人均粮食产量的方差为,2015﹣2019年人均粮食产量的方差为,则_________.(填<、=或>)3、在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:劳动时间(时)人数占整体的百分比0.51212%13030%1.5x40%218y合计m100%(1)统计表中的x= ,y= ;(2)被调查同学劳动时间的中位数是 时;(3)请将条形统计图补充完整;(4)求所有被调查同学的平均劳动时间.(5)若该校有1500名学生,试估计双休日在各自社区参加2小时义务劳动的学生有多少?4、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人?5、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人? -参考答案-一、单选题1、A【分析】根据方差的意义求解即可.【详解】解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.2、B【分析】在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解.【详解】依题意,质量在82.5kg及以上的生猪有:(头)故选B.【点睛】本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键.3、D【分析】根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.【详解】解:A.甲的众数为7,乙的众数为8,故此项错误;B.甲的中位数为7,乙的中位数为4,故此项错误;C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;故选:D.【点睛】此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.4、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;样本是1000个成年人是否吸烟,故D选项错误;本地区约有18%的成年人吸烟是对的,故B选项正确.故选:B.【点睛】本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键.5、D【分析】根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可【详解】根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;这组数据的中位数为:6,故B选项正确,不符合题意;这组数据的平均数为,故C选项正确,不符合题意;这组数据的方差为:,故D选项不正确,符合题意.故选D.【点睛】本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:.6、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.7、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.8、C【分析】根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项.【详解】A.喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;C.喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.D.在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意;故选C.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.9、C【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.10、D【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.【详解】解:,乙、丁的麦苗比甲、丙要高,,甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.【点睛】本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.二、填空题1、2000【分析】设碗中有芝麻粒,根据取出100粒刚好有记号的5粒列出算式,再进行计算即可.【详解】解:设碗中有芝麻粒,根据题意得:,解得:.故答案为:2000.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是掌握利用样本中的数据对整体进行估算.2、4000【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有200条,即可得出答案.【详解】解:∵300条鱼中发现有标记的鱼有15条,
∴有标记的占到,
∵有200条鱼有标记,
∴该河流中有野生鱼200÷=4000(条);
故答案为:4000.【点睛】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.3、84 83.2 甲的成绩比乙稳定 甲 甲的平均成绩高且比较稳定 【分析】(1)利用平均数等于一组数据的总和除以这组数据的个数,即可求解;(2)根据题意得:,则甲的成绩比乙稳定,即可求解;(3)根据甲的平均成绩高且比较稳定,即可确定甲去.【详解】(1)甲成绩的平均数是: ;乙成绩的平均数是: ;(2)∵,∴,∴甲的成绩比乙稳定,(3)甲去参加比赛更合适,理由:甲的平均成绩高且比较稳定.【点睛】本题主要考查了求平均数,运用平均数和方差作决策,熟练掌握平均数等于一组数据的总和除以这组数据的个数是解题的关键.4、【分析】计算出平均数和方差后,再计算方差的算术平方根,即为标准差.【详解】解:,,这组数据的标准差是.故答案为:.【点睛】本题考查的是标准差的计算,掌握方差的计算公式和方差与标准差的关系是解题的关键,注意标准差即方差的算术平方根.5、乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:,,,甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义,解题的关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题1、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.【详解】解:(1)∵抽查的学生总数为:(人),∴;,故答案为:40;40%;(2)成绩在的学生人数所占百分比为:,故频数分布表为:分数段频数百分比80≤x<854020%85≤x<908040%90≤x<956030%95≤x<1002010%频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:(人),答:估计该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键.2、(1)“人均粮食产量”,2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后(2)①②③(3)>【分析】(1)根据题目中的数据和信息三,可以解答本题;(2)根据信息一中统计图中的数据,可以判断各个小题中的结论是否成立;(3)根据信息一中统计图中的数据波动大小,可以解答本题.【详解】解:(1) 我国人均粮食产量的中位数为419千克,我国人均猪羊牛肉产量的中位数是42.5千克,∵2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,∵440>419,36.2<42.5,2019年甘肃省人均粮食产量为440千克排在中位数之前,而人均猪羊牛肉产量为36.2千克,排在中位数之后,故答案为: “人均粮食产量”; 2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后;(2)①从统计图中观察2005﹣2015年内我国人均粮食产量呈现持续增长趋势正确;故①正确,②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;∵(2010﹣2014)平均数/千克-(2005﹣2009)平均数/千克=448.4-388.4=60,(2015﹣20194)平均数/千克-(2010﹣2014)平均数/千克=77-448.4=28.6,∵60>28.6,∴2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高正确;③2005﹣2019年我国人均粮食产量连续15年平均年产量中从高于人均400千克的国际粮食安全标准线从2008年——2019年共12年2005﹣2019年我国人均粮食产量连续12年平均年产量高于人均400千克的国际粮食安全标准线但时间正确故③正确,故答案为:①②③;(3)∵我国2005﹣2009年人均粮食产量波动较大,2015﹣2019年人均粮食产量波动较小,我国2005﹣2009年人均粮食产量的方差为大于2015﹣2019年人均粮食产量的方差为,∴>. 故答案为:>.【点睛】本题考查频数分布直方图、加权平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.3、(1)40,18%;(2)1.5;(3)见解析;(4)1.32小时;(5)270人【分析】(1)根据频率=,计算即可解决问题;(2)根据中位数的定义进行解答;(3)根据(1)求出的x的值,即可补全统计图;(4)根据平均数的定义计算即可;(5)用该校的总人数乘以双休日在各自社区参加2小时义务劳动的学生所占的百分比即可.【详解】解:(1)被调查的同学的总人数为(人),∴,,故答案为:40,0.18;(2)把这些数从小到大排列,中位数是第50、51个数的平均数,则中位数是(小时);故答案为:1.5;(3)根据(1)补全统计图如下: (4)所有被调查同学的平均劳动时间是:(小时);(5)根据题意得:(人),答:估计双休日在各自社区参加2小时义务劳动的学生有270人.【点睛】本题主要考查了条形统计图,平均数、中位数,用样本估计总体,根据统计图找出有用信息是解答此题的关键.4、(1)人;(2)画图见解析;(3)人【分析】(1)由喜欢足球的有100人,占比25%,列式,再计算即可得到答案;(2)分别求解喜欢排球的占比为: 喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有人,(2)喜欢排球的占比为: 所以喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.5、(1)120人;(2)见解析,36°;(3)126人【分析】(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.【详解】解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,本次调查人数为:(人); (2)∵艺术:(人),∴补全的条形统计图如下图所示:
“其他”所对应的圆心角度数为; (3)样本中选择阅读的人数为18人,占样本的百分比为,该校学生总人数为840人,估计选择阅读的学生有:(人),∴选择“阅读”的学生大约有126人.【点睛】本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.
相关试卷
这是一份数学八年级下册第十七章 方差与频数分布综合与测试练习题,共20页。试卷主要包含了在一次射击训练中,甲等内容,欢迎下载使用。
这是一份2021学年第十七章 方差与频数分布综合与测试课时练习,共19页。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共19页。试卷主要包含了已知一组数据的方差s2=[等内容,欢迎下载使用。