搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布难点解析试题

    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布难点解析试题第1页
    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布难点解析试题第2页
    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布难点解析试题第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第十七章 方差与频数分布综合与测试复习练习题

    展开

    这是一份初中第十七章 方差与频数分布综合与测试复习练习题,共21页。
    京改版八年级数学下册第十七章方差与频数分布难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为(    ).A.9 B.8 C.7 D.62、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是(    ).A.4 B.5 C.6 D.73、数字“20211202”中,数字“2”出现的频数是(  )A.1 B.2 C.3 D.44、某企业对其生产的产品进行抽检,抽检结果如表:抽检件数1040100200300500不合格件数0123610若该企业生产该产品10000件,估计不合格产品的件数为(  )A.80 B.100 C.150 D.2005、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是(  A.180 B.140 C.120 D.1106、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是(   A.平均数是80 B.众数是60 C.中位数是100 D.方差是207、为了了解某校七年级名学生的跳绳情况(秒跳绳的次数),随机对该年级名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数为:,则以下说法正确的是(        )A.跳绳次数不少于次的占B.大多数学生跳绳次数在范围内C.跳绳次数最多的是D.由样本可以估计全年级人中跳绳次数在次的大约有8、用计算器计算方差时,要首先进入统计计算状态,需要按键(    A. B.C. D.9、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是(  )A.平均数、中位数和众数都是3B.极差为4C.方差是D.标准差是10、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是(     参加人数平均数中位数方差4095935.14095954.6A.甲班的成绩比乙班的成绩稳定B.甲班成绩优异的人数比乙班多C.甲,乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.2环,方差分别是,则三人中成绩最稳定的是______(填“甲”或“乙”或“丙”).2、某选手在比赛中的成绩(单位:分)分别是90,87,92,88,93,方差是5.2(单位:分2),如果去掉一个最高分和一个最低分,那么该选手成绩的方差会_____(填“变大”、“变小”、“不变”或“不能确定”).3、在方差计算公式中,可以看出15表示这组数据的______________.4、某班50名学生参加2013年初中毕业生毕业考试,综合评价等级为ABC等的学生情况如扇形图所示,该学校共有500人参加毕业考试,估计该学校得A等的学生有______名.5、某舞蹈队8名队员的身高(单位:厘米)如下:163,164,164,165,165,166,166,167.计算这些队员的身高的方差记为S12,这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,再次计算所得身高的方差记为S22.则S12S22的大小关系是___(选填“>”“<”或“=”).三、解答题(5小题,每小题10分,共计50分)1、为了遏制新型冠状病毒疫情的蔓延势头,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.(1)本次调查的人数有多少人?(2)请补全条形图,并求出“在线答疑”在扇形图中的圆心角度数;(3)若全校学生共有2000人,请你估计该校学生对“在线阅读”感兴趣共有多少人?2、某中学开展歌咏比赛,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,复赛成绩(满分为100分)如图所示. (1)根据图示填写表格:班级平均数(分)中位数(分)众数(分)九(1) 85 九(2)85 100(2)已知九年级(2)班复赛成绩的方差为160,计算九年级(1)班复赛成绩的方差,并分析哪个班的复赛成绩稳定.3、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?4、在新冠状病毒防控期间,各地纷纷展开了停课不停学活动,学校为了了解学生自主阅读情况,抽样调查了部分学生每周用于自主阅读的时间,过程如下:收集数据:从全校随机抽取20名学生,每周用于自主阅读时间的调查,数据如下:(单位:30  60  81  50  44  110  130  146  80  10060  80  120  140  75  81  10  30  81  92整理数据:按下表分段整理样本数据:自主阅读时间等级A人数384分析数据:样本的平均数、中位数、众数如下表所示:平均数中位数众数80请回答下列问题:(1)表格中的数据_______,________,_______;(2)用样本中的统计量估计该校学生每周用于课外阅读时间的等级为______;(3)假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读________本课外书.5、某校随机抽取部分学生,对“学习习惯”进行问卷调查.设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A.很少;B.有时;C.常常;D.总是.将调查结果的数据进行了整理、绘制成如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)填空:a        %,b       %;(2)请你补全条形统计图;(3)若该校有2000名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生各有多少名? -参考答案-一、单选题1、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B.【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.2、C【分析】根据组数=(最大值-最小值)÷组距计算即可.【详解】解:∵在样本数据中最大值与最小值的差为35-15=20,
    又∵组距为4,
    ∵20÷4=5,
    ∴应该分成5+1=6组.
    故选:C.【点睛】本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.3、D【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.【详解】解:数字“20211202”中,共有4个“2”,∴数字“2”出现的频数为4,故选:D.【点睛】题目主要考查频数的定义,理解频数的定义是解题关键.4、D【分析】求出抽取件数不合格的概率,用样本估计总体即可得出10000件产品不合格的件数.【详解】抽查总体数为:(件),不合格的件数为:(件),(件).故选:D【点睛】本题考查用样本估计总体,求出样本的不合格率来估计总体的不合格率是解题的关键.5、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.【详解】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.6、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为方差为观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.7、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘即可得;由频数分布直方图可知,大多数学生跳绳次数在范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是次;由样本可以估计全年级人中跳绳次数在次的大约有(人),进行判断即可得.【详解】A、跳绳次数不少于次的占,选项说法正确,符合题意;B、由频数分布直方图可知,大多数学生跳绳次数在范围内,选项说法错误,不符合题意;C、每组数据包括左端值不包括右端值,故跳绳次数最多的不是次,选项说法错误,不符合题意;D、由样本可以估计全年级人中跳绳次数在次的大约有(人),选项说法错误,不符合题意;故选A.【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解.8、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.9、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=C选项不符合题意;S,因此D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.10、D【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【详解】A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D.【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.二、填空题1、丙【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵S2=0.76,S2=0.71,S2=0.69,S2S2S2∴三人中成绩最稳定的是丙.故答案为:丙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、变小【分析】求出去掉一个最高分和一个最低分后的数据的方差,通过方差大小比较,即可得出答案.【详解】去掉一个最高分和一个最低分后为88,90,92,平均数为方差为 ∵5.2>2.67,∴去掉一个最高分和一个最低分后,方差变小了,故答案为:变小.【点睛】本题考查了方差、算数平均数的知识;解题的关键是熟练掌握方差的性质,从而完成求解.3、平均数【分析】方差是由每个数据与平均值的差的平方之和除以总数得到,由此判断即可.【详解】解:根据方差计算公式可知,公式中15是这组数据的平均数,故答案为:平均数.【点睛】本题考查方差公式的理解,理解方差公式中每个数据的含义是解题关键.4、100【分析】根据各部分的和可以看作整体1,求得A等的所占百分比,A等学生占该班人数的百分比乘以总人数即A等的人数.【详解】解:500×(1-30%-50%)=100.故答案为:100.【点睛】本题考查扇形统计图,解题的关键是记住百分比,总人数,所占人数之间的关系.5、=【分析】根据方差的计算公式分别求出S12S22,再比较即可.【详解】解:舞蹈队8名队员身高的平均数为:×(163+164×2+165×2+166×2+167)=165,S12×[(163−165)2+2×(164−165)2+2×(165−165)2+2×(166−165)2+(167−165)2]=1.5;这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,所得数据为:166,167,167,168,168,169,169,170,这组新数据的平均数为:×(166+167×2+168×2+169×2+170)=168,S22×[(166−168)2+2×(167−168)2+2×(168−168)2+2×(169−168)2+(170−168)2]=1.5;S12S22,故答案为:=.【点睛】本题考查了方差的定义:一般地设n个数据,x1x2,…xn的平均数为,则方差S2[(x12+(x22+…+(xn2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题1、(1)100人;(2)图形见解析,72°;(3)500人【分析】(1)根据“在线阅读”的人数和比例即可求解总人数;(2)根据总人数,求出“在线答疑”的人数,然后补全条形统计图;利用“在线答疑”的人数÷总人数×360°即可得到对应圆心角的度数;(3)根据“在线阅读”人数的占比×总人数即可得到结论.【详解】解:(1)25÷25%=100(人),∴本次调查的人数为100人;(2)∵本次调查的人数为100人,∴“在线答疑”的人数为:100-25-40-15=20(人),补全条形统计图如图所示:“在线答疑”所占圆心角度数为:(3)由题意,对“在线阅读”感兴趣的人数占比为:(人),∴估计该校学生对“在线阅读”感兴趣共有500人.【点睛】本题考查条形统计图与扇形统计图信息综合,通过对条形统计图与扇形统计图信息的分析,准确求出调查的总人数是解题关键.2、(1)九(1)班平均数为85,众数为85,九(2)班中位数为80;(2)70;(3)九年级(1)班复赛成绩的方差为70,九(1)班的方差小,成绩更稳定些.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数、众数的定义和平均数的求法即可得答案;(2)根据方差公式计算可得九年级(1)班复赛成绩的方差,根据平均数相同,方差越小,成绩越稳定即可得答案.【详解】(1)由图可知:九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、75、80、100、100,九(1)班的平均数为(75+80+85+85+100)÷5=85,∵九(1)班的5个成绩中,85出现2次,∴九(1)的众数为85,∵九(2)班的5个成绩中,中间的数是80,∴九(2)班的中位数为80,填表如下: 平均数(分)中位数(分)众数(分)九(1)858585九(2)8580100(2)∵九(1)班平均数为85,∴九(1)班方差s12=[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,∵九(2)班的方差为160,70<160,∴九(1)班的成绩更稳定些.【点睛】本题考查平均数、中位数、众数及方差,将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据叫做这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数称为这组数据的中位数;一组数据中,出现次数最多的数据称为这组数据的众数;方差越大,数据的波动越大;方差越小,数据的波动越小;熟练掌握相关定义及方差公式是解题关键.3、(1)120人;(2)见解析,36°;(3)126人【分析】(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.【详解】解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,本次调查人数为:(人);                 (2)∵艺术:(人),∴补全的条形统计图如下图所示:
     “其他”所对应的圆心角度数为     (3)样本中选择阅读的人数为18人,占样本的百分比为该校学生总人数为840人,估计选择阅读的学生有:(人),∴选择“阅读”的学生大约有126人.【点睛】本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.4、(1)5,80.5,81;(2)B;(3)13【分析】(1)用总人数减去A等级的人数即可求出a的值;根据中位数概念即可求出b的值;根据众数的概念即可求出c的值;(2)根据平均数,中位数和众数即可得出该校学生每周用于课外阅读时间的等级;(3)用阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.【详解】(1)20名学生每周用于自主阅读的时间从小到大排列为如下:10,30,30,44,50,60,60,75,80,80,81,81,81,92,100,110,120,130,140,146,∵第10、11个数据分别为80、81, ∴中位数出现次数最多的数是81,∴众数是81.故答案为:5,80.5,81;(2)∵平均数为80,中位数为80.5,众数为81,∴用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B故答案为:B;(3)估计该校学生每人一年(按52周计算)平均阅读课外书为(本),故答案为:13.【点睛】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.5、(1)12,36;(2)见解析;(3)720人【分析】(1)首先计算出抽查的学生总数,然后再计算ab的值即可;(2)计算出“常常”所对的人数,然后补全统计图即可;(3)利用样本估计总体的方法计算即可.【详解】解:(1)调查总人数:(人),故答案为:12,36;(2)“常常”所对的人数:200×30%=60(人),补全统计图如图所示:(3)2000×30%=600(人),2000×36%=720(人),答:“常常”对错题进行整理、分析、改正的有600人,“总是”对错题进行整理、分析、改正的有720人.【点睛】本题考查条形统计图与扇形统计图的综合运用,熟练掌握抽样的各项数目、各项百分比、总数、各项圆心角及整体的各项数目、各项百分比、总数等的计算方法是解题关键. 

    相关试卷

    初中数学第十七章 方差与频数分布综合与测试课后测评:

    这是一份初中数学第十七章 方差与频数分布综合与测试课后测评,共21页。试卷主要包含了在这学期的六次体育测试中,甲等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试,共23页。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题,共21页。试卷主要包含了在一次投篮训练中,甲等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map