年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布重点解析试卷

    立即下载
    加入资料篮
    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布重点解析试卷第1页
    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布重点解析试卷第2页
    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布重点解析试卷第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题

    展开

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题,共21页。试卷主要包含了在一次投篮训练中,甲等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是(    A.平均数是89 B.众数是93C.中位数是89 D.方差是2.82、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是(    ).A.100,55% B.100,80% C.75,55% D.75,80%3、下列说法正确的是(  )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定4、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示: 平均数/分969597方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择(    A.甲 B.乙 C.丙 D.丁5、已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可分成(    ).A.11组 B.9组 C.8组 D.10组6、如表是某次射击比赛中10名选手的射击成绩(环):射击成绩(环)678910人数(人)12421关于这10名选手的射击环数,下列说法不正确的是(    A.众数是8 B.中位数是5 C.平均数是8 D.方差是1.27、为了了解某校七年级名学生的跳绳情况(秒跳绳的次数),随机对该年级名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数为:,则以下说法正确的是(        )A.跳绳次数不少于次的占B.大多数学生跳绳次数在范围内C.跳绳次数最多的是D.由样本可以估计全年级人中跳绳次数在次的大约有8、在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S2=0.24,S2=0.42,S2=0.56,S2=0.75,成绩最稳定的是(    A.甲. B.乙 C.丙 D.丁9、在对一组样本数据进行分析时,小华列出了方差的计算公式S2,下列说法错误的是(    A.样本容量是5 B.样本的中位数是4C.样本的平均数是3.8 D.样本的众数是410、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()A.14 B.12 C.9 D.8第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:尺码/2222.52323.52424.525销售量/双12512631如果鞋店要购进90双这种女鞋,那么购进三种尺码女鞋数量最合适的分别是__________.2、一组数据0,1,3,2,4的平均数是__,这组数据的方差是__.3、在数3141592653中,偶数出现的频率是______.4、圆周率π≈3.141592653589793,数字5出现的频数是____.5、一组数据﹣1、2、3、4的极差是________.三、解答题(5小题,每小题10分,共计50分)1、2021年9月起,重庆市各中小学为落实教育部政策,全面开展课后延时服务.某区教委为了了解该区中学延时服务的情况,随机抽查了甲、乙两中学各100名家长进行问卷调查.家长对延时服务的综合评分记为x,将所得数据分为5组(“很满意”:;“满意”:;“比较满意”:;“不太满意”:;“不满意”:;)区教委将数据进行分析后,得到如下部分信息:a.甲中学延时服务得分情况扇形统计图b.乙中学延时服务得分情况频数分布直方图c.甲、乙两中学延时服务得分的平均数、中位数、众数如表:学校平均数中位数众数79798085m83d.乙中学“满意组”的分数从高到低排列,排在最后的10个数分别是:e.甲、乙两中学“满意组”的人数一样多.请你根据以上信息,回答下列问题:(1)直接写出am的值;(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);(3)区教委指出:延时服务综合得分在70分及以上才算合格,请你估计甲中学2000名家长中认为该校延时服务合格的人数.2、某中学为了解八年学级生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的a     b     (2)在这次调查中,参加志愿者活动的次数的众数为      ,中位数为      (3)若该校八年级共有700名学生,根据调查统计结果,估计该校八年级学生参加志愿者活动的次数大于4次的人数.3、某校为了解本校初中学生体能情况,随机抽取部分学生进行了一次测试,并根据标准按测试成绩分成ABCD四个等级,绘制出以下两幅不完整的统计图.请根据图中信㿝解答下列问题:(1)本次抽取㐱加则试的学生为     人,扇形统计图中A等级所对的圆心角是     度;(2)请补全条形统计图;(3)若该校初中学生有1200人,请估计该校学生体能情况成绩为C等级的有多少人数?4、甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下: 平均成绩中位数众数方差a771.27b8c根据以上信息,整理分析数据如下:(1)填空:a        b        c        (2)从平均数和中位数的角度来比较,成绩较好的是        ;(填“甲”或“乙”)(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.5、某校了解学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了________名学生;(2)补全条形统计图;(3)若该校共有1800名,估计爱好运动的学生有________人. -参考答案-一、单选题1、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为,众数为90,中位数为90,故选项A、B、C错误;方差为故选项D正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.2、B【分析】根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案.【详解】解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,∴第五小组的频率是∴此次统计的样本容量是∵合格成绩为20,∴本次测试的合格率是故选B【点睛】本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.3、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.4、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意,丁同学的平均分为:方差为:∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、A【分析】据组数=(最大值-最小值)÷组距计算即可得解,注意小数部分要进位.【详解】解:由组数=(最大值-最小值)÷组距可得:组数=(140-40)÷10+1=11,故选择:A【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.6、B【分析】根据众数、中位数、平均数及方差的定义逐一计算可得答案.【详解】解:这组数据中8出现次数最多,即众数为8;其中位数是第5、6个数据的平均数,故其中位数为平均数为方差为故选:B.【点睛】本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.7、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘即可得;由频数分布直方图可知,大多数学生跳绳次数在范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是次;由样本可以估计全年级人中跳绳次数在次的大约有(人),进行判断即可得.【详解】A、跳绳次数不少于次的占,选项说法正确,符合题意;B、由频数分布直方图可知,大多数学生跳绳次数在范围内,选项说法错误,不符合题意;C、每组数据包括左端值不包括右端值,故跳绳次数最多的不是次,选项说法错误,不符合题意;D、由样本可以估计全年级人中跳绳次数在次的大约有(人),选项说法错误,不符合题意;故选A.【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解.8、A【分析】根据方差的意义,即可求解.【详解】解:∵S2=0.24,S2=0.42,S2=0.56,S2=0.75∴成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.9、D【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为则样本的容量是5,选项A正确;样本的中位数是4,选项B正确;样本的平均数是,选项C正确;样本的众数是3和4,选项D错误;故选:D.【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.10、B【分析】根据样本频数直方图、样本容量的性质计算,即可得到答案.【详解】根据题意,第二组的频数是: 故选:B.【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解.二、填空题1、3,18,9【分析】分别求得这三种鞋销售数量的占比,然后×90即可算出.【详解】解:根据题意可得:销售的某种女鞋30双,24厘米、24.5厘米和25厘米三种女鞋数量各为1、6、3;则要购进90双这种女鞋,购进这三种女鞋数量各应是:(双)、(双)、(双),故填:3,18,9.【点睛】考查了综合运用统计知识解决问题的能力,属于基础题型.2、2    2    【分析】依据平均数的定义:,计算即可得;再根据方差的定义: 列式计算可得.【详解】解:这组数据的平均数方差故答案为:2,2.【点睛】本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键.3、30%【分析】在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.【详解】由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:故答案为:30%【点睛】本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.4、3【分析】数5出现的次数即可得出答案.【详解】中,5出现了3次,∴数字5出现的频数是3.故答案为:3.【点睛】本题考查频数的定义:一组数据中,某数据出现的次数,掌握频数的定义是解题的关键.5、5【分析】极差是最大值减去最小值,即即可.【详解】解:故答案是:5.【点睛】本题考查了极差,极差反映了一组数据变化范围的大小,解题的关键是掌握求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.三、解答题1、(1);(2)见解析;(3)【分析】(1)根据甲、乙两中学“满意组”的人数一样多得出甲组满意的人数为人,从而得出甲组满意所占总人数百分比,进而得出的值;根据中位数的计算方法得出乙组的中位数位于第的平均数;(2)根据平均数以及中位数进行分析即可;(3)由甲组70分及以上所占百分比估算甲中学2000名家长中认为该校延时服务合格的人数即可.【详解】解:(1)∵甲、乙两中学“满意组”的人数一样多,∴甲满意的人数为人,∴甲满意的人数占甲组的百分比为:乙学校中位数为第名和名的平均数,∴乙(中位数)(2)从平均数来看,乙学校整体成绩高于甲学校整体成绩;从中位数来看,乙学校的高分段人数较多;综上:乙学校的延时服务开展得更好;(3)甲中学70分及以上的百分比=(名),答:甲中学2000名家长中认为该校延时服务合格的人数为名.【点睛】本题考查了扇形统计图,频数分布直方图,中位数,平均数,由部分估计总体等知识点,读懂题意,理解相关定义是解本题的关键.2、(1)4,5;(2)4,4;(3)245人【分析】(1)根据所给数据分别求出次数为3和次数为5的人数即可;(2)根据中位数和众数的定义求解即可;(3)先求出样本中八年级学生参加志愿者活动的次数大于4次的人数占比,然后估计总体即可.【详解】解:(1)由所给数据可知:次数为3的人数有4人,即;次数为5的人数有5人,即故答案为:4,5;(2)由表格可知次数为4的人数最多,即参加志愿者活动的次数的众数为4,∵一共有20名学生参加调查,∴中位数为次数排在第10位和第11位的两个数据的平均数,即故答案为:4,4;(3)由表格可知,样本中一共有5+2=7名学生参加志愿者活动的次数大于4次,∴估计该校八年级学生参加志愿者活动的次数大于4次的人数为人.【点睛】本题主要考查了中位数,众数,频数分布表,用样本估计总体,解题的关键在于能够熟知相关知识.3、(1)50,;(2)画图见解析;(3)240人【分析】(1)由B类22人,占比,可得总人数,再利用A等级占比乘以可得圆心角的度数;(2)先求解C组人数,再补全图形即可;(3)利用总人数乘以C类的占比从而可得答案.【详解】解:(1)由B类22人,占比,可得:总人数为:人,扇形统计图中A等级所对的圆心角是 故答案为:50,(2)C类的人数有:人,补全图形如下:(3)该校初中学生有1200人,则该校学生体能情况成绩为C等级的有:人,答:该校初中学生有1200人,则该校学生体能情况成绩为C等级的有240人.【点睛】本题考查的是从条形图与扇形图中获取信息,求解扇形某部分的圆心角的大小,利用样本估计总体,掌握条形图与扇形图的互相关联的关系是解本题的关键.4、(1)7;7.5;4.2;(2)乙;(3)选择乙参加比赛,理由见解析【分析】(1)根据平均数公式计算甲,利用中位数先把以成绩从低到高排序,取中间两个成绩7、8的平均数,利用方差公式求c即可;(2)根据平均数两者均为7,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,(3)甲乙平均数相同,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,从方差看乙的方差大于甲,只说明乙的成绩没有甲稳定,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,乙队员要比甲队员参赛好.【详解】解:(1)甲的平均成绩为乙的成绩从低到高排列为:3,4,6,7,7,8,8,8,9,10,所以中位数==4.2故答案为:7,7.5,4.2.(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,故答案为:乙;(3)选择乙参加比赛,理由:从平均数上看,甲、乙平均成绩相等,总分相等,从中位数上看乙的中位数和众数都大于甲,说明乙的成绩好于甲,从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定,从众数看乙的众数是8,甲的众数是7,说明乙成绩要好些,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,故应选乙队员参赛.【点睛】本题考查条形统计数,折线统计图,统计表获取信息以及处理信息,中位数,平均数,方差,利用集中趋势的量与离散程度的量进行决策是解题关键.5、(1)100;(2)见解析;(3)720【分析】(1)根据爱好娱乐人数的百分比,以及娱乐人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数、运动人数、以及上网的人数,从而可补全图形.(3)利用样本估计总体即可估计爱好运动的学生人数.【详解】解:(1)爱好娱乐的人数为15,所占百分比为15%,∴共调查人数为:15÷15%=100.故填:100.(2)爱好上网人数为:100×10%=10,爱好运动人数为:100×40%=40,爱好阅读人数为:100-15-10-40=35,补全条形统计图,如图所示:(3)爱好运动的学生人数所占的百分比为40%,则:该校共有学生大约有:1800×40%=720人;所以,若该校共有1800名,估计爱好运动的学生有720人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,会从图标中获取有用信息. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂检测题:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂检测题,共23页。试卷主要包含了某校八年级人数相等的甲,一组数据1等内容,欢迎下载使用。

    2021学年第十七章 方差与频数分布综合与测试同步训练题:

    这是一份2021学年第十七章 方差与频数分布综合与测试同步训练题,共21页。试卷主要包含了一组数据1等内容,欢迎下载使用。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂检测题:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂检测题,共20页。试卷主要包含了一组数据等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map