2020-2021学年第五章 二元一次方程组综合与测试课时训练
展开
这是一份2020-2021学年第五章 二元一次方程组综合与测试课时训练,共18页。试卷主要包含了方程组的解是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )A.-5 B.-1 C.9 D.112、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )A. B.C. D.3、一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x海里/时,水流速度为y海里/时,则下列方程组中正确的是( ).A. B.C. D.4、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.5、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=06、在某场CBA比赛中,某位运动员的技术统计如下表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)防攻(次)个人总得分(分)数据38271163433注:①表中出手投篮次数和投中次数均不包括罚球;②总得分=两分球得分+三分球得分+罚球得分.根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.A.5,6 B.6,5 C.4,7 D.7,47、方程组的解是( )A. B. C. D.8、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )A. B. C. D.9、关于的二元一次方程组的解满足,则k的值是( )A.2 B. C. D.310、下列各方程中,是二元一次方程的是( )A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.2、如图,一个长方形图案是由8个大小相同的小长方形拼成,宽为60cm,设每个小长方形的长为cm,宽为cm,可列方程组为______.3、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”则甲、乙现在的年龄分别是______.4、方程组的解是 ______.5、已知,用含m的代数式表示n,则______.三、解答题(5小题,每小题10分,共计50分)1、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”.如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰好得到一个四位数m',则称m'为m的“进步美好数”,并规定F(m)=.例如m=134是一个“进步数”,在134的末尾添加数字3×2=6,得到一个四位数m′=1346,则1346为134的“进步美好数”,F(134)==12.(1)求F(123)和F(246)的值.(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定K(m)=.若K(m)除以4恰好余3,求出所有的“进步数”m.2、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型甲乙运载量(吨/辆)1012运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?3、已知关于x,y的方程组的解是正数,化简4、解方程组:5、解下列方程组:(1);(2). ---------参考答案-----------一、单选题1、D【分析】把代入ax-5y=1解方程即可求解.【详解】解:∵是关于x、y的二元一次方程ax-5y=1的解,∴将代入ax-5y=1,得:,解得:.故选:D.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.2、C【分析】根据题意,x+y=40,5x+10y=275,判断即可.【详解】根据题意,得x+y=40,5x+10y=275,∴符合题意的方程组为,故选C.【点睛】本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.3、D【分析】根据等量关系“顺水时间×顺水速度=90、逆水时间×逆水速度=90”以及顺水、逆水速度与静水速度、水流速度的关系即可解答.【详解】解:根据题意可得,顺水速度=x+y,逆水速度=x-y,,化简得.故选:D.【点睛】考查主要考查了用二元一次方程组解决行程问题,掌握顺水路程及逆水路程的等量关系以及顺水速度=静水速度+水流速度、逆水速度=静水速度一水流速度是解答本题的关键.4、B【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.5、B【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.6、B【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:,解得:.答:设本场比赛中该运动员投中两分球6个,三分球5个.故选:B.【点睛】本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.7、C【分析】先用加减消元法解二元一次方程组,再确定选项即可.【详解】解:方程组由①×3+②得10x=5,解得,把代入①中得,所以原方程组的解是.故选择C.【点睛】本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.8、A【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:.故选:A.【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.9、B【分析】解方程组,用含的式子表示,然后将方程组的解代入即可.【详解】解:,①-②得:,∵,∴,解得:,故选:B.【点睛】本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.10、D【分析】根据二元一次方程的定义逐一排除即可.【详解】解:A、=y+5x不是二元一次方程,因为不是整式方程;B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;D、x+y=1是二元一次方程.故选:D.【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.二、填空题1、【解析】【分析】由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得,故答案为:.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.2、【解析】【分析】根据题意可知,小长方形的一个长+一个宽等于大长方形的宽,2个小长方形的长等于大长方形的长,一个小长方形的长+三个小长方形的宽等于大长方形的长,由此即可列出方程求解.【详解】解:由题意得:,故答案为:.【点睛】本题主要考查了列二元一次方程组,解题的关键在于能够准确读懂题意.3、42岁,23岁【解析】【分析】设甲现在x岁,乙现在y岁,根据甲、乙年龄之间的关系,可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设甲现在x岁,乙现在y岁,依题意,得:,解得:.答:甲现在42岁,乙现在23岁.故答案为:42岁,23岁.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4、##【解析】【分析】根据二元一次方程组的解法步骤,分步计算即可得到正确答案.【详解】解:,①+②得:2x=10,∴x=5.把x=5代入①得:5+2y=7,解得:y=1.∴原方程组的解为:.故答案为:.【点睛】本题考查的是二元一次方程组的解法,牢记加减消元法或代入消元法的解法步骤是解题关键.5、【解析】【分析】先移项,然后将的系数化为1,即可求解.【详解】解:故答案为:【点睛】此题考查了解二元一次方程,解题的关键是将其中一个数看做已知数,另一个数看做未知数.三、解答题1、(1),;(2)【分析】(1)根据定义F(m)=求解即可;(2)根据题意求得,进而根据以及K(m)除以4恰好余3,根据求得的值,进而求得的值.【详解】解:(1),根据定义,F(123),则F(246)(2)设,且为正整数则 K(m)除以4恰好余3,则能被4整除即能被4整除,即是整数, 设,即,是的倍数,则是2的倍数或 或则或或综上所述,【点睛】本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键.2、甲种车型需9辆,乙种车型需5辆.【分析】设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.【详解】解:设甲种车型需辆,乙种车型需辆,根据题意得解得,∴甲种车型需9辆,乙种车型需5辆答:甲种车型需9辆,乙种车型需5辆.【点睛】本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.3、5a+1【分析】先求出方程组的解,然后根据方程组的解是正数可知4a+5是正数,a-4的取值范围,再根据绝对值的意义化简即可.【详解】解:,①+②,得2x=8a+10,∴x=4a+5,把x=4a+5代入②,得4a+5+y=3a+9,∴y=-a+4,∴,∵方程组的解是正数,∴,即4a+5是正数,a-4是负数∴=.【点睛】本题考查了二元一次方程组的解法,以及化简绝对值,求出方程组的解集是解答本题的关键.4、【分析】利用代入法求解.【详解】解:,由②得y=2x-14③,将③代入①,得3x+2(2x-14)=21,解得x=7,将x=7代入③,得y=0,∴方程组的解为.【点睛】此题考查了解二元一次方程组,掌握解二元一次方程组的解法:代入法和加减法,能根据每个方程的特点选择恰当的解法是解题的关键.5、(1);(2).【分析】利用加减法解二元一次方程组即可求解.【详解】解:(1)①×3得 ,②+③得 5x=15,解得x=3,把x=3代入①得 3+y=3,解得y=0,∴二元一次方程组的解是;(2)①×2得 10x-12y=18③,②×3得 21x-12y=-15④,④-③得 11x=-33,解得 x=-3,把x=-3代入①得 -15-6y=9,解得y=-4,∴二元一次方程组的解是.【点睛】本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试测试题,共19页。试卷主要包含了已知方程组中,x,下列方程是二元一次方程的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了小明在解关于x,下列方程组为二元一次方程组的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题,共19页。试卷主要包含了方程组的解是等内容,欢迎下载使用。