


北京课改版七年级下册第五章 二元一次方程组综合与测试同步达标检测题
展开京改版七年级数学下册第五章二元一次方程组专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
2、下列各式中是二元一次方程的是( )
A. B. C. D.
3、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).
A.11支 B.9支 C.7支 D.5支
4、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )
A. B.
C. D.
5、关于x,y的方程是二元一次方程,则m和n的值是( )
A. B. C. D.
6、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )
A. B. C. D.
7、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )
A.1个 B.2个 C.3个 D.4个
8、小明在解关于x、y的二元一次方程组时得到了正确结果.后来发现、处被墨水污损了,请你帮他计算出、处的值分别是( ).
A.1、1 B.2、1 C.1、2 D.2、2
9、下列方程组中,是二元一次方程组的是( )
A. B. C. D.
10、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )
A.2 B.1 C. D.0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若与的和是单项式,则m=_______,n=_______.
2、方程组的解是:________.
3、某玩具店在10月份开始售卖中国航天系列的模型积木,其中包括款(中国载人空间站)、款(长征五号运载火箭)、款(火星探测器)、款(天舟货运飞船)、款(航天员公仔),所有模型积木的售价均为整数.在10月份售卖过程中,款和款的售价相同且售价在100元与200元之间,款的售价比款售价低50元,款售价比款售价高40元,款、款、款、款、款的销量之比为,且10月份款与款的销售总额比款的销售额多1000元,款的销售额比款的销售额少20元.进入11月,随着双11购买节的临近,玩具店决定在双11这一天举行促销活动,相比10月份各款的售价,款和款的售价都降低30元,款的售价降低20元,款、款降低的价格都为款降低价格的.活动结束后统计发现:活动当天,款销量比10月份的款销量增加了50%,款销量为10月份自身销量的2倍,款销量增加了10月份款销量的一半,款销量与10月份款销量相同,而款销量相比10月份自身销量有所增加,且活动当天各款模型积木销售总额比10月份款、款、款销售总额的2倍多348元,则双11促销活动当天购买一套中国航天系列的模型积木(款、款、款、款、款各一个)需要__________元.
4、如图,为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数.(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),试比较的大小关系_________.
5、已知是二元一次方程组的解,则mn的相反数为______.
三、解答题(5小题,每小题10分,共计50分)
1、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.
(1)求购买一副跳棋和一副军棋各需要多少钱?
(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?
2、如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?
3、已知方程组的解也是关于、的二元一次方程的一组解,求的值.
4、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为;51的正因数有1、3、17、51,它的真因数之和为,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为,而,所以8的亲和数为,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.
(1)10的真因数之和为_______;
(2)求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;
(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.
5、已知关于的方程组.
(1)①当a=0时,该方程组的解是__________;
②x与y的数量关系是___________(不含字母a);
(2)是否存在有理数a,使得?请写出你的思考过程.
---------参考答案-----------
一、单选题
1、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
2、B
【分析】
根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;
【详解】
中x的次数为2,故A不符合题意;
是二元一次方程,故B符合题意;
中不是整式,故C不符合题意;
中y的次数为2,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.
3、D
【分析】
根据题意列出三元一次方程组消元,再求解即可.
【详解】
解:设购买甲、乙、丙三种钢笔分别为x、y、z支,由题意,得
①×4-②×5得,
所以,
将代入①,得.
即.
∵,
∴,
∴x为小于6的正整数,
四个选项中只有D符合题意;
故选D.
【点睛】
本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.
4、B
【分析】
设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.
【详解】
解:设学生人数为x,长凳数为y,
由题意得:,
故选B.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.
5、C
【分析】
根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.
【详解】
解:由题意可得:,即
①+②得:,解得
将代入①得,
故
故选:C
【点睛】
此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.
6、D
【分析】
利用加减消元法逐项判断即可.
【详解】
A. ,可以消去x,不符合题意;
B. ,可以消去y,不符合题意;
C. ,可以消去x,不符合题意;
D. ,无法消元,符合题意;
故选:D
【点睛】
本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.
7、C
【分析】
设这对夫妇的年龄的和为x,子女现在的年龄和为y,这对夫妇共有z个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.
【详解】
设现在这对夫妇的年龄和为x岁,子女现在的年龄和为y岁,这对夫妇共有z个子女,则,
解得
这对夫妇共有3个子女.
故选C.
【点睛】
本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.
8、B
【分析】
将方程组的解代入方程求解即可.
【详解】
将代入,得,
解之得.
故选:B.
【点睛】
此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.
9、C
【分析】
根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.
【详解】
解:A. 第二个方程中的是二次的,故本选项错误;
B.方程组中含有3个未知数,故本选项错误;
C. 符合二元一次方程组的定义,故本选项正确;
D. 第二个方程中的xy是二次的,故本选项错误.
故选C.
【点睛】
:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可.
10、D
【分析】
解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.
【详解】
解:,
①+②得
2x=2a+6,
x=a+3,
把代入①,得
a+3+y=-a+1,
y=-2a-2,
∵x+2y=﹣1
∴a+3+2(-2a-2)=-1,
∴a=0,
故选D.
【点睛】
本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.
二、填空题
1、 1 ##-0.5
【解析】
【分析】
单项式与的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得,解方程即可求得m和n的值.
【详解】
解:由题意知单项式与是同类项,
所以有,
解得.
故答案为:1;.
【点睛】
此题考查了合并同类项,以及单项式,熟练掌握合并同类项法则是解本题的关键.
2、
【解析】
【分析】
利用加减消元法解题.
【详解】
解:
①+②×3得:
把代入②得,
故答案为:.
【点睛】
本题考查加减法解二元一次方程组,是重要考点,掌握相关知识是解题关键.
3、
【解析】
【分析】
根据十月份的数据,求得十月份的销售量以及款、款的销售价,再根据十一月份的数据,以及销售价和销售量的范围,求得十月份款、款、款的售价,即可求解.
【详解】
解:设十月份款、款售价为元,则,且为整数,则款的售价为元,款、款的销售价分别为,元,
根据十月份销售量款、款、款、款、款的销量之比为
设销售量分别为,,,,件
则由题意可得:,解得
由题意可得:十一月份款、款、款、款、款的售价分别为:,,,,元
销售量款、款、款、款、款的销量分别为:、、,,件,
由题意可得:
化简得
∵,即
解得
∴
∵,都为正整数,
∴能被整除,则的个位数字为或
则的个位数字为或,则的个位数字为为或
∴,经检验当时,不为整数,舍去,
所以,此时
双11促销活动当天购买一套中国航天系列的模型积木(款、款、款、款、款各一个)为元
故答案为
【点睛】
此题考查了三元一次方程组,二元一次方程的应用,解题的关键是理解题意,找到等量关系,列出方程并根据参数的取值范围确定参数的解.
4、x2>x3>x1
【解析】
【分析】
先对图表数据进行分析处理得:,再结合数据进行简单的合情推理得:,所以得到x2>x3>x1.
【详解】
解:由图可知:,
即,
所以x2>x3>x1,
故答案为:x2>x3>x1.
【点睛】
本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题.
5、-12
【解析】
【分析】
把代入方程组求出m,n即可;
【详解】
把代入中得:,
得:,
解得:,
把代入①中得:,
∴方程组的解是,
∴,
∴mn的相反数是;
故答案是:.
【点睛】
本题主要考查了二元一次方程组的求解,代数式求值,相反数的性质,准确计算是解题的关键.
三、解答题
1、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋
【分析】
(1)设购买一副跳棋和一副军棋各需要x元、y元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;
(2)设购买m副军棋,则购买副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.
【详解】
解:(1)设购买一副跳棋和一副军棋各需要x元、y元,
由题意得:,
解得,
∴购买一副跳棋和一副军棋各需要6元、10元,
答:购买一副跳棋和一副军棋各需要6元、10元;
(2)设购买m副军棋,则购买副跳棋,
由题意得:,即,
解得,
∴学校最多可以买30副军棋,
答:学校最多可以买30副军棋.
【点睛】
本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.
2、动点M每秒运动5个单位长度,动点N每秒运动2个单位长度
【分析】
设动点M、N运动的速度分别是每秒x、y个单位长度,根据“若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.”列出方程组,解出即可.
【详解】
解:设动点M、N运动的速度分别是每秒x、y个单位长度,
∵点A、B表示的数分别是-20、64,
∴线段AB长为,
∴由题意有,
解得
∴动点M每秒运动5个单位长度,动点N每秒运动2个单位长度.
【点睛】
本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
3、.
【分析】
利用加减消元法求出方程组的解得到x与y的值,代入方程计算即可求出a的值.
【详解】
解:方程组,
②+①得:,
解得:,代入①中,
解得:,
把,代入方程得,,
解得:.
【点睛】
此题考查了加减消元法解二元一次方程组,以及二元一次方程的解,解一元一次方程,方程组的解即为能使方程组中两方程成立的未知数的值.
4、(1)8;(2)见解析;(3)10461,11451,12441.
【分析】
(1)先求出10的真因数,再求10的真因数之和即可;
(2)先把给出的数用代数式表示,,根据要求列代数式得=,说明括号中的数为整式即可;
(3)设五位“两头蛇数”为(),先求出16的真因数之和15,找到16的亲和数为 ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为,可得能被33整除,根据,且,得出能被33整除得出即可.
【详解】
.解:(1)10的真因数为1,2,5,
10的真因数之和为1+2+5=8,
故答案为8;
(2),,
∵,
=,
=,
又因为,的整数,
∴为整数,
一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;
(3)设五位“两头蛇数”为(),
∵末位数为1,
∴不能被2(真因数)整除,
∵16的真因数之和,
∴16的亲和数为 ,
能被33整除,
能被33整除,
又2不能被33整除,
能被33整除,
,且,
∴,
或.
或(舍去),
,
,
∴或或,
所以五位“两头蛇数”为10461,11451,12441.
【点睛】
本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.
5、(1)①;②;(2)不存在,思考过程见解析.
【分析】
(1)①将代入方程组,再利用加减消元法解方程组即可得;
②先根据方程组中的第二个方程可得,再将其代入第一个方程即可得;
(2)先根据绝对值和偶次方的非负性求出,再利用(1)②的结论进行检验即可得答案.
【详解】
解:(1)①当时,方程组为,
由④③得:,
解得,
将代入③得:,
解得,
则该方程组的解是,
故答案为:;
②,
由第二个方程得:,
将代入第一个方程得:,
整理得:,
故答案为:;
(2)不存在,思考过程如下:
当时,则,即,
此时,
所以不存在有理数,使得.
【点睛】
本题考查了利用加减消元法解二元一次方程组、绝对值和偶次方的非负性,熟练掌握消元法是解题关键.