![必考点解析京改版七年级数学下册第五章二元一次方程组专项练习试题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12698690/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![必考点解析京改版七年级数学下册第五章二元一次方程组专项练习试题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12698690/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![必考点解析京改版七年级数学下册第五章二元一次方程组专项练习试题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12698690/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第五章 二元一次方程组综合与测试课时作业
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课时作业,共20页。试卷主要包含了用代入消元法解关于,已知方程组的解满足,则的值为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知方程,,有公共解,则的值为( ).A.3 B.4 C.0 D.-12、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )A.-2 B.-1 C.2 D.13、图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x的值应为( ).
A.-4 B.-3 C.3 D.44、已知是方程5x−ay=15的一个解,则a的值为( )A.5 B.−5 C.10 D.−105、用代入消元法解关于、的方程组时,代入正确的是( )A. B.C. D.6、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )A. B. C. D.7、下列方程组中,不是二元一次方程组的是( ).A. B. C. D.8、用加减法将方程组中的未知数x消去后,得到的方程是( ).A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=169、已知方程组的解满足,则的值为( )A.7 B. C.1 D.10、下列是二元一次方程的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知是二元一次方程组的解,则mn的相反数为______.2、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.3、若x,y满足方程组,则化数式的值为 _____.4、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有2千克A粗粮,3千克B粗粮,3千克C粗粮;乙种粗粮每袋装有4千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A、B、C三种粗粮的成本价之和.已知每袋甲种粗粮的成本比每袋乙种粗粮的成本高10%,每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;当电商销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的数量之比是______.5、方程组的解是 ______.三、解答题(5小题,每小题10分,共计50分)1、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪.已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元.(1)求紫外线消毒灯和体温检测仪的单价各为多少元;(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案?2、解二元一次方程组:3、解二元一次方程组:.4、某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?5、用加减消元法解下列方程组:(1) (2) (3) (4) ---------参考答案-----------一、单选题1、B【分析】联立,,可得:,,将其代入,得值.【详解】 ,解得,把代入中得:,解得:.故选:B.【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.2、C【分析】先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.【详解】解∵x=y,∴原方程组可变形为,解方程①得x=1,将代入②得,解得,故选C.【点睛】本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.3、A【分析】如图所示,其中a、b、c、d表示此方格中表示的数,则可得由此即可得到④,⑤,然后把④⑤代入③中即可求解.【详解】解:如图所示,其中a、b、c、d表示此方格中表示的数,由题意得:,由①得④,由②得⑤,把④和⑤代入③中得,∴,故选A.【点睛】本题主要考查了解方程组,解题得关键在于能够利用整体代入的思想进行求解.4、A【分析】把与的值代入方程计算即可求出的值.【详解】解:把代入方程,得,解得.故选:.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5、A【分析】利用代入消元法把①代入②,即可求解.【详解】解:,把①代入②,得:.故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.6、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.7、B【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;方程组中,可以整理为所以C也符合;B中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.8、D【分析】根据二元一次方程组的加减消元法可直接进行求解.【详解】解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;故选D.【点睛】本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.9、D【分析】①+②得出x+y的值,代入x+y=1中即可求出k的值.【详解】解:①+②得:3x+3y=4+k,∴,∵,∴,∴,解得:,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10、B【分析】由二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,解答即可.【详解】解:A、不是二元一次方程,只含有一个未知数,不符合题意;B、是二元一次方程,符合题意;C、不是二元一次方程,未知项的次数为2,不符合题意;D、不是二元一次方程,未知项的次数为2,不符合题意;故选B【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程,掌握二元一次方程的概念是解题的关键.二、填空题1、-12【解析】【分析】把代入方程组求出m,n即可;【详解】把代入中得:,得:,解得:,把代入①中得:,∴方程组的解是,∴,∴mn的相反数是;故答案是:.【点睛】本题主要考查了二元一次方程组的求解,代数式求值,相反数的性质,准确计算是解题的关键.2、568【解析】【分析】设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解.【详解】解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意可得:,解得:x=,∵1≤a≤10,且a为整数,∴,∴b=4,∴总人数=4×48+4×24+40×7=568(人),故答案为:568.【点睛】本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.3、0【解析】【分析】二元一次方程组两式相加得x+y=2,两式相减得x-y=4,将结果代入=0.【详解】∵令有∴令有∴将,代入得.故答案为:0.【点睛】本题考查了已知式子的值解代数式值和解二元一次方程组,通过加减消元法化简二元一次方程组,得出所求代数式中含有的部分,再代入计算即可.4、10:9##【解析】【分析】设A的单价为x元,B的单价为y元,C的单价为z元,可得甲的成本,乙的成本;再求出甲、乙的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.【详解】解:设A的单价为x元,B的单价为y元,C的单价为z元,甲种粗粮的售价为m元,乙种粗粮的售价为n元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得甲一袋的成本是2x+3y+3z,乙一袋的成本是4x+2y+2z,2x+3y+3z=(4x+2y+2z) ×(1+10%),化简得,3x=y+z,甲一袋的成本是11x,乙一袋的成本是10x,∵每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.∴m-11x=(n-10x)(1+50%),当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;∴2(n-10x)(1+50%)+n-10x=(2×11x+10x)×25%,解得,n=12x,∴m=14x,甲一袋的售价为14x,乙一袋的售价为12x,根据甲乙的利润,得(14x﹣11x)a+(12x -10x)b=(11x a+10xb)×24%化简,得3a+2b=2.64a+2.4b0.36a=0.4ba:b=10:9,故答案为:10:9.【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.5、##【解析】【分析】根据二元一次方程组的解法步骤,分步计算即可得到正确答案.【详解】解:,①+②得:2x=10,∴x=5.把x=5代入①得:5+2y=7,解得:y=1.∴原方程组的解为:.故答案为:.【点睛】本题考查的是二元一次方程组的解法,牢记加减消元法或代入消元法的解法步骤是解题关键.三、解答题1、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案.【分析】(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论.【详解】解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,则由题意得,解得.答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;(2)设购买紫外线消毒灯台,则购买体温检测仪个.,解得:,∵为正整数,∴该校有5种购买方案.【点睛】本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键.2、【分析】根据加减消元法计算即可.【详解】解:①2得4x+6y=60③②3得9x+6y=75④④③得5x=15 x=3将x=3代入①中6+3y=30y=8∴原方程组的解为【点睛】本题主要考查解二元一次方程组,熟练掌握二元一次方程组的解法是解决本题的关键.3、.【分析】方程组利用加减消元法求出解即可.【详解】解:,②-①得:2x=3,解得x=,把x=代入①得:2y=5,解得:y=-,则方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,根据题意得:,解得:, 答:A种树苗每棵的价格40元,B种树苗每棵的价格10元; (2)=1140元。答:总费用需1140元.【点睛】本题考查二元一次方程组的应用,正确理解题意列出方程求解是解题的关键.5、(1) (2) (3) (4)【分析】(1)直接利用加法进行消元即可求解;(2)直接利用减法进行消元即可求解;(3)将方程整理后,直接利用加减消元法求解;(4)将方程整理后,直接利用加减消元法求解.【详解】解:(1)由得:将代入中得:∴原方程组的解为(2)得:将代入中得:∴原方程组的解为(3)得:③得:将代入中得:∴原方程组的解为(4);得:得:将代入中得:∴原方程组的解为【点睛】本题主要考查了加减消元法,熟练掌握加减消元法是解答此题的关键.
相关试卷
这是一份数学七年级下册第五章 二元一次方程组综合与测试随堂练习题,共19页。试卷主要包含了用代入消元法解关于,若是方程组的解,则的值为,若是关于x等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。
这是一份七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了若是关于x,下列方程是二元一次方程的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)