![必考点解析京改版七年级数学下册第五章二元一次方程组专题测试试卷(无超纲带解析)第1页](http://img-preview.51jiaoxi.com/2/3/12698647/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![必考点解析京改版七年级数学下册第五章二元一次方程组专题测试试卷(无超纲带解析)第2页](http://img-preview.51jiaoxi.com/2/3/12698647/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![必考点解析京改版七年级数学下册第五章二元一次方程组专题测试试卷(无超纲带解析)第3页](http://img-preview.51jiaoxi.com/2/3/12698647/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第五章 二元一次方程组综合与测试一课一练
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试一课一练,共20页。试卷主要包含了二元一次方程的解可以是,已知方程组中,x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列是二元一次方程的是( )A. B. C. D.2、下列方程中,①;②;③;④,是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个3、若是方程的解,则等于( )A. B. C. D.4、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )A.6或 B.2或6 C.2或 D.2或5、已知代数式,当时,其值为4;当时,其值为8;当x=2时,其值为25;则当时,其值为( ).A.4 B.8 C.62 D.526、如果的解都是正数,那么a 的取值范围是( ).A.a<2; B.; C. ; D. 7、二元一次方程的解可以是( )A. B. C. D.8、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )A. B. C. D.9、已知方程组中,x、y的值相等,则m等于( ).A.1或-1 B.1 C.5 D.-510、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.2、用加减法解方程组时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________.3、重庆市举行了中学生足球联赛,共赛17轮(即每队均需比赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若文德中学足球队的积分为16分,且踢平场数是所负场数的整数倍,且胜、平、负的场数各不相同.则文德中学足球队共负____场.4、我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x辆车,y人,则______,______.5、元旦期间,某商场开业,为了吸引更多的人流量,该商场决定举行迎宾抽奖活动.活动规则如下:只要在该商场消费一定的金额,消费者就可以凭借小票去抽奖中心兑换盲盒(盲盒的形状,大小,重量等各种属性完全相同),且盲盒里面分别装有50元、30元、10元、5元的奖金.开业当天商场准备了400个盲盒,且全部被消费者领完.经统计,开业当天上午领取的盲盒中所含奖金的总金额为950元,其中领取含有30元的盲盒的数量是含有10元的盲盒数量的一半,领取含50元的盲盒的数量多于1个,少于5个;下午领取的盲盒中所含奖金的总金额是1240元,下午领取含5元的盲盒的数量比上午领取含5元的盲盒的数量少10个,领取含10元的盲盒的数量是上午领取含10元的盲盒的数量的2倍,领取含30元的盲盒的数量比上午领取含30元的盲盒的数量多5个,含50元的盲盒只有1个被抽中,剩余的盲盒则全被晚上领取完毕,则晚上被领取的盲盒的数量是______.三、解答题(5小题,每小题10分,共计50分)1、已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y.2、解方程组或不等式组:(1);(2).3、已知关于x,y的方程组的解是正数,化简4、用加减法解方程组:5、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪.已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元.(1)求紫外线消毒灯和体温检测仪的单价各为多少元;(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案? ---------参考答案-----------一、单选题1、B【分析】由二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,解答即可.【详解】解:A、不是二元一次方程,只含有一个未知数,不符合题意;B、是二元一次方程,符合题意;C、不是二元一次方程,未知项的次数为2,不符合题意;D、不是二元一次方程,未知项的次数为2,不符合题意;故选B【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程,掌握二元一次方程的概念是解题的关键.2、A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程,此项正确;②化简后为,不符合定义,此项错误;③含有三个未知数不符合定义,此项错误;④不符合定义,此项错误;所以只有①是二元一次方程,故选:A.【点睛】本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.3、B【分析】把代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,∴,∴,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.4、A【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为x cm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,,解得,,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,,解得:,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度或6cm/s时能使两三角形全等.故选:A.【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.5、D【分析】将已知的三组和代数式的值代入代数式中,通过联立三元一次方程组 ,求出、、的值,然后将代入代数式即可得出答案.【详解】由条件知:,解得:.当时,.故选:D.【点睛】本题考查三元一次方程组的解法,解题关键是掌握三元一次方程组的解法.6、C【分析】先解方程组,求出用含a表示的x、y,根据方程组的解为正数,列不等式求解即可.【详解】解:,①×2得,③+②得,把代入①得,,∵的解都是正数,∴,解得.故选择C.【点睛】本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键.7、A【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.8、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.9、B【分析】根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.【详解】解:解方程组,得:,∵x、y的值相等,∴,解得.故选:B.【点睛】本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键.10、B【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.二、填空题1、【解析】【分析】由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得,故答案为:.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.2、 【解析】【分析】根据加减消元的方法求解即可.【详解】解:用加减法解方程组时,由①+②,得,两边同时除以6,得,由②-①,得,两边同时除以2,得,所以原方程组的解为.故答案是:,,,,.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3、1或5##5或1【解析】【分析】设该校足球队胜了x场,平了y场,负了z场,依题意建立方程组,解方程组从而用k(整数)表示负场数y=kz,根据z为整数,分别求出k的取值,然后求出x、y的值,继而可得出该校足球队负几场即可.【详解】解:设文德中学足球队胜了x场,平了y场,负了z场,由题意得,,把③代入①②得:,解得:(k为整数).又∵z为正整数,∴当k=1时,z=7,y=7,x=3,(因为胜、平、负的场数各不相同,所以,不符合题意,舍去)当k=2时,z=5,y=10,x=2;当k=16时,z=1,y=16,x=0,所以,文德中学足球队负了1或5场.故答案为:1或5.【点睛】本题考查了三元一次组的应用,解答本题的关键是设出未知数列出方程组,用k表示出z的值,根据z为整数,即可分类讨论出z的值.4、 15 39【解析】【分析】设有x辆车,有y人,根据“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘”列出方程组,解之即可.【详解】解:设有x辆车,有y人,依题意得:,解得,,故答案为:15,39.【点睛】本题考查了二元一次方程组的应用,找准等量关系是解此题的关键.5、206个【解析】【分析】设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,由下午领取的盲盒的总金额为1240元得,分三种情况:当上午领取的50元盲盒为2个时,3个时,4个时,分别解方程组求解即可.【详解】解:设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,其他盲盒领取的个数见表格, 上午领取的个数下午领取的个数50元盲盒 130元盲盒+510元盲盒y2y5元盲盒xx-10 由题意得,化简得,∵上午领取含50元的盲盒的数量多于1个,少于5个,∴当上午领取的50元盲盒为2个时,得,化简得,解方程组,得,∴晚上领取的盲盒的个数为206个;当上午领取的50元盲盒为3个时,得,化简得,解方程组,得,此时为小数,故舍去;当上午领取的50元盲盒为4个时,得,化简得,解方程组,得(舍去),综上,晚上领取的盲盒的个数为206个,故答案为:206个【点睛】此题考查二元一次方程组的实际应用,正确理解题意设未知数并列得方程组是解题的关键.三、解答题1、,【分析】先移项,得到 ,然后等式两边同时除以2,即可求解.【详解】解:∵2x+3y=7,∴ , ,∴, .【点睛】本题主要考查了解二元一次方程,熟练掌握二元一次方程的解法是解题的关键.2、(1);(2).【分析】(1)利用代入消元法求解即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1)由②得:③,将③代入①得,解得将代入③得: ∴方程组的解为:;(2)解不等式组由①得:,解得,由②得:,解得,∴不等式组的解集为:.【点睛】本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法.3、5a+1【分析】先求出方程组的解,然后根据方程组的解是正数可知4a+5是正数,a-4的取值范围,再根据绝对值的意义化简即可.【详解】解:,①+②,得2x=8a+10,∴x=4a+5,把x=4a+5代入②,得4a+5+y=3a+9,∴y=-a+4,∴,∵方程组的解是正数,∴,即4a+5是正数,a-4是负数∴=.【点睛】本题考查了二元一次方程组的解法,以及化简绝对值,求出方程组的解集是解答本题的关键.4、【分析】先把原方程整理得,然后利用加减消元法求解即可.【详解】解:整理得,得,解得,将代入①中得,解得,∴原方程组的解是.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.5、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案.【分析】(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论.【详解】解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,则由题意得,解得.答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;(2)设购买紫外线消毒灯台,则购买体温检测仪个.,解得:,∵为正整数,∴该校有5种购买方案.【点睛】本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共21页。试卷主要包含了一个角的补角比这个角的余角大.,如图,直线AB,下列说法中正确的是,若∠α=55°,则∠α的余角是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试精练,共18页。试卷主要包含了已知,计算的结果是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)