北京课改版七年级下册第五章 二元一次方程组综合与测试课时练习
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课时练习,共17页。试卷主要包含了在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列方程组中,属于二元一次方程组的是( )
A. B. C. D.
2、已知方程组中,x、y的值相等,则m等于( ).
A.1或-1 B.1 C.5 D.-5
3、方程x+y=6的正整数解有( )
A.5个 B.6个 C.7个 D.无数个
4、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
5、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )
A. B.
C. D.
6、已知是方程5x−ay=15的一个解,则a的值为( )
A.5 B.−5 C.10 D.−10
7、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
8、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )
A.3种 B.4种 C.5种 D.6种
9、己知是关于,的二元一次方程的解,则的值是( )
A.3 B. C.2 D.
10、已知是方程的解,则k的值为( )
A.﹣2 B.2 C.4 D.﹣4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知关于x的方程=1+中,a、b、k为常数,若无论k为何值,方程的解总是x=1,则a+b的值为 ___.
2、一个两位数,个位上的数字与十位上的数字之和是10,把这个两位数的个位和十位上的数字调换位置后,得到的数比原来大18,则调换后的数为____.
3、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,
4、我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x辆车,y人,则______,______.
5、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab的值为_____.
三、解答题(5小题,每小题10分,共计50分)
1、阅读材料:
在解方程组时,萌萌采用了一种“整体代换”的解法.
解:将方程②变形:,即③
把方程①代入③得,
∴,
把代入①,得,
∴原方程组的解为.
请模仿萌萌的“整体代换”法解方程组
2、解方程:
3、已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y.
4、解方程组
(1)
(2)
5、列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:
类别/单价 | 成本价(元/箱) | 销售价(元/箱) |
A品牌 | 20 | 32 |
B品牌 | 35 | 50 |
(1)该大型超市购进A、B品牌矿泉水各多少箱?
(2)全部销售完600箱矿泉水,该超市共获得多少利润?
---------参考答案-----------
一、单选题
1、C
【分析】
根据二元一次方程组的定义求解即可.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.
【详解】
解:A、中有3个未知数,不是二元一次方程组,不符合题意;
B、未知数x的次数是2,不是二元一次方程组,不符合题意;
C、由两个一次方程组成,并含有两个未知数,故是二元一次方程组,符合题意;
D、中xy的次数是2,不是二元一次方程组,不符合题意.
故选:C.
【点睛】
此题考查了二元一次方程组的定义,解题的关键是熟练掌握二元一次方程组的定义.二元一次方程组:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.
2、B
【分析】
根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.
【详解】
解:解方程组,
得:,
∵x、y的值相等,
∴,
解得.
故选:B.
【点睛】
本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键.
3、A
【分析】
根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可
【详解】
解:方程的正整数解有,,,,共5个,
故选:A.
【点睛】
本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.
4、A
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
5、C
【分析】
根据题意,x+y=40,5x+10y=275,判断即可.
【详解】
根据题意,得x+y=40,5x+10y=275,
∴符合题意的方程组为,
故选C.
【点睛】
本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.
6、A
【分析】
把与的值代入方程计算即可求出的值.
【详解】
解:把代入方程,
得,
解得.
故选:.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
7、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
8、A
【分析】
设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.
【详解】
解:设购买50元和25元的两种换气扇的数量分别为x,y
由题意得:,即,
∵x、y都是正整数,
∴当x=1时,y=6,
当x=2时,y=4,当x=3时,y=2,
∴一共有3种方案,
故选A.
【点睛】
本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.
9、A
【分析】
将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.
【详解】
解:将代入关于x,y的二元一次方程2x-y=27得:
2×3k-(-3k)=27.
∴k=3.
故选:A.
【点睛】
本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.
10、C
【分析】
把代入是方程kx+2y=﹣2得到关于k的方程求解即可.
【详解】
解:把代入方程得:﹣2k+6=﹣2,
解得:k=4,
故选C.
【点睛】
本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.
二、填空题
1、
【解析】
【分析】
将代入方程,然后令的系数为0,得到关于的二元一次方程组,求解即可.
【详解】
解:将代入方程=1+得
由题意可得:,解得
则
故答案为:
【点睛】
此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.
2、64
【解析】
【分析】
设原来两位数的十位为x,个位为y,根据个位上的数字与十位上的数字之和为10,把个位上的数字与十位上的数字调换位置后,得到新的两位数比原数大18,列方程组求解.
【详解】
解:设原来两位数的十位为x,个位为y,
由题意得, ,
解得:,
即调换后的数为64.
故答案为:64.
【点睛】
本题考查了二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
3、故答案为:
【点睛】
本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.
5.5,2,5,7
【解析】
【分析】
设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.
【详解】
解:设明文为,,,,
由题意得:,
解得:,
则得到的明文为5,2,5,7.
故答案为:5,2,5,7.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
4、 15 39
【解析】
【分析】
设有x辆车,有y人,根据“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘”列出方程组,解之即可.
【详解】
解:设有x辆车,有y人,
依题意得:,
解得,,
故答案为:15,39.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系是解此题的关键.
5、16
【解析】
【分析】
根据图1和图2分析可得,,即可的值,进而可得的值
【详解】
由图1可得长方形的长为,宽为,
根据图2可知大长方形的宽可以表示为
解得
故答案为:
【点睛】
本题考查了二元一次方程组,根据图中信息求得的值是解题的关键.
三、解答题
1、.
【分析】
将方程②变形为2(4x-3y)-y=18,再将4x-3y=6整体代入即可求方程组.
【详解】
解:中,
将②变形,得:8x-6y-y=18即2(4x-3y)-y=18③,
将①代入③得,2×6-y=18,
∴y=-6,
将y=-6代入①得,x=-3,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,熟练掌握加减消元法和代入消元法解二元一次方程组,体会整体思想解方程组的便捷是解题的关键.
2、方程组的解是.
【分析】
根据加减消元法求解方程组即可;
【详解】
解:
①-②,得,
解得,
将代入①得,
解得,
所以方程组的解是.
【点睛】
本题主要考查了二元一次方程组的求解,熟练掌握运用加减消元法是解题关键.
3、,
【分析】
先移项,得到 ,然后等式两边同时除以2,即可求解.
【详解】
解:∵2x+3y=7,
∴ , ,
∴, .
【点睛】
本题主要考查了解二元一次方程,熟练掌握二元一次方程的解法是解题的关键.
4、(1);(2)
【分析】
(1)利用加减消元法解二元一次方程组即可;
(2)利用加减消元法解二元一次方程组即可.
【详解】
解:(1)
用① ×2+②得,解得,
把代入①得,解得,
∴方程组的解为:;
(2)
用① ×2+②×3得,解得,
把代入①得,解得,
∴方程组的解为:.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.
5、(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元
【分析】
(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,根据该超市购进A、B两种品牌的矿泉水共600箱且共花费15000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)利用总利润=每箱的销售利润×销售数量(购进数量),即可求出结论.
【详解】
解:(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,
依题意得:,
解得:.
答:该大型超市购进A品牌矿泉水400箱,B品牌矿泉水200箱.
(2)(元).
答:全部销售完600箱矿泉水,该超市共获得7800元利润.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试当堂检测题,共19页。试卷主要包含了二元一次方程组的解是,若是关于x,下列方程组为二元一次方程组的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共20页。试卷主要包含了已知关于x,已知二元一次方程组则等内容,欢迎下载使用。
这是一份2021学年第五章 二元一次方程组综合与测试练习题,共23页。试卷主要包含了设m为整数,若方程组的解x,下列方程中,①x+y=6;②x,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。