初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时练习
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时练习,共18页。试卷主要包含了下列计算正确的是,如果a﹣4b=0,那么多项式2,若,,求的值是,下列式子,把多项式按的降幂排列,正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果多项式xm-3+5x-3是关于x的三次三项式,那么m的值为( )A.0 B.3 C.6 D.92、若x2+mxy+25y2是一个完全平方式,那么m的值是( )A.±10 B.-5 C.5 D.±53、 “数形结合”是一种重要的数学思维,观察下面的图形和算式: 解答下列问题:请用上面得到的规律计算:21+23+25+27…+101=( )A. B. C. D.4、下列计算正确的是( )A.3(x﹣1)=3x﹣1 B.x2+x2=2x4C.x+2y=3xy D.﹣0.8ab+ab=05、如果a﹣4b=0,那么多项式2(b﹣2a+10)+7(a﹣2b﹣3)的值是( )A.﹣1 B.﹣2 C.1 D.26、若,,求的值是( )A.6 B.8 C.26 D.207、下列计算正确的是( )A. B.C. D.8、下列式子:x2+2,,,, −5a,0中,单项式的个数是( )A.6个 B.5个 C.4个 D.3个9、把多项式按的降幂排列,正确的是( )A. B.C. D.10、下列各式中,计算结果为x10的是( )A.x5+x5 B.x2•x5 C.x20÷x2 D.(x5)2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知代数式的值是7,则代数式的值是_______.2、单项式﹣a2h的次数为 _____.3、下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系_________.4、把多项式3x﹣2+x2+4x3按x的降幂排列:_____.5、计算的结果为________.三、解答题(5小题,每小题10分,共计50分)1、【教材呈现】人教版八年级上册数学教材第112页的第7题:已知,,求的值.【例题讲解】老师讲解了这道题的两种方法:方法一方法二∵,∴.∴.∵,∴.∵,∵,∵,,∴. 【方法运用】请你参照上面两种解法,解答以下问题.(1)已知,,求的值;(2)已知,求的值.【拓展提升】如图,在六边形中,对角线和相交于点G,当四边形和四边形都为正方形时,若,正方形和正方形的面积和为36,直接写出阴影部分的面积.2、如图:在数轴上点A表示数a,点B表示数b,点C表示数c,a是多项式的次数的相反数,b是最小的正整数,单项式的次数为c.(1)________,__________,________.(2)若将数轴在点O折叠,则点A落下的位置与点C的距离为_______;(3)点开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运动,t秒过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则_____,_____(t的整式表示)(4)在(3)的条件下,当AC=3AB时,求的值.3、先化简,再求值:,其中.4、我们用表示一个三位数,其中x表示百位上的数,y表示十位上的数,z表示个位上的数,即.(1)说明一定是111的倍数;(2)①写出一组a,b,c的取值,使能被7整除,这组值可以是a= ,b= ,c= ;②若能被7整除,则a,b,c三个数必须满足的数量关系是 .5、计算:. ---------参考答案-----------一、单选题1、C【分析】直接利用多项式的定义得出m-3=3,进而求出即可.【详解】解:∵整式xm-3+5x-3是关于x的三次三项式,∴m-3=3,解得:m=6.故选:C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.2、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2+mxy+25y2=x2+mxy+(5y)2,∴mxy=±2x×5y,解得:m=±10.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.3、B【分析】由题意根据图形和算式的变化发现规律,进而根据得到的规律进行计算即可.【详解】解:观察以下算式:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
发现规律:
1+3+5+7+9+…+19=100=102.
∴1+3+5+7+9+…+19+21+23+25+27+…+101=512
∴21+23+25+27+…+101=512-102=2501.
故选:B.【点睛】本题考查规律型-图形的变化类、有理数的混合运算,解决本题的关键是根据图形和算式的变化寻找规律,并运用规律.4、D【分析】根据去括号和合并同类项的法则逐一判断即可.【详解】解:A、,计算错误,不符合题意;B、计算错误,不符合题意;C、与不是同类项,不能合并,不符合题意;D、,计算正确,符合题意;故选D.【点睛】本题主要考查了去括号和合并同类项,熟知相关计算法则是解题的关键.5、A【分析】利用整式的加减计算法则和去括号法则化简,由此求解即可.【详解】解:∵,∴,故选A.【点睛】本题主要考查了整式的加减--化简求值,去括号,熟知相关计算法则是解题的关键.6、B【分析】根据题意利用完全平方和公式可得,进而整体代入,即可求出的值.【详解】解:∵,∴,∵,∴,∴.故选:B.【点睛】本题考查代数式求值,熟练掌握运用完全平方和公式进行变形与整体代入计算是解题的关键.7、C【分析】根据幂的运算及整式的乘法运算即可作出判断.【详解】A、,故计算不正确;B、,故计算不正确;C、,故计算正确;D、,故计算不正确.故选:C【点睛】本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键.8、D【分析】根据单项式的定义逐个分析判断即可,单项式是由数或字母的乘积组成的代数式,单独的一个数或一个字母也叫做单项式【详解】解:x2+2,,,, −5a,0中,, −5a,0是单项式,共3个,其他的不是单项式故选D【点睛】本题考查了单项式的定义,理解单项式的定义是解题的关键.9、D【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:把多项式按的降幂排列:,故选:D【点睛】本题考查了多项式的知识,要注意,在排列多项式各项时,要保持其原有的符号.10、D【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.【详解】解:A、x5+x5=2x5,故A不符合题意;B、x2•x5=x7,故B不符合题意;C、x20÷x2=x18,故C不符合题意;D、(x5)2=x10,故D符合题意;故选D.【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键.二、填空题1、4【分析】根据题意,可先求出x2+3x的值,然后整体代入所求代数式求值即可.【详解】解:∵=7,
∴x2+3x=2,
则3(x2+3x)=6,
∴3x2+9x-2=3(x2+3x)-2=4.
故答案为:4.【点睛】本题考查了代数式求值,解题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+3x的值,然后利用“整体代入法”求代数式的值.2、3【分析】直接根据一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【详解】解:单项式﹣a2h的次数是:2+1=3.
故答案为:3.【点睛】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.3、d-c=b-a【分析】此题可以有多种表示方法:①横向来看,左右两个数的差都是1;②纵向看,上下两个数字的差相等;③对角线的角度看,两个数字的和相等.【详解】解:d-c=b-a(答案不唯一).故答案为:d-c=b-a.【点睛】本题考查了数字变化规律,熟悉生活中的一些常识,能够把数学和生活密切联系起来.从所给材料中分析数据得出规律是应该具备的基本数学能力.4、【分析】按照某个字母的指数由高到低排列多项式的项叫做把多项式按这个字母作降幂排列,根据定义直接作答即可.【详解】解:把多项式3x﹣2+x2+4x3按x的降幂排列为: 故答案为:【点睛】本题考查的是按某个字母把多项式进行降幂排列,掌握“按照某个字母的指数由高到低重新排列”是解本题的关键,易错点是交换加式的位置不注意连同前面的符号一起交换.5、x+x2
【分析】根据整式的运算法则即可求出答案.【详解】解:= = 故答案为:【点睛】本题考查整式的运算,解题的关键熟练运用整式的运算法则.三、解答题1、(1);(2);拓展提升:阴影部分的面积为14.【解析】【分析】(1)根据已知例题变换完全平方公式即可得;(2)将两个完全平方公式进行变换即可得; 拓展提升:根据图形可得,,结合题意,应用完全平方公式的变形可得,由正方形四条边相等及阴影部分的面积公式,代入求解即可得.【详解】解:(1)∵,∴,∵,∴,∴;(2)∵,∴,∵,∴;拓展提升:∵,∴由图可得:,∴,∵,∴,∴,∵四边形ABGF和四边形CDEG为正方形,∴,,,∴阴影部分的面积为14.【点睛】题目主要考查完全平方公式的运用及变形,理解题中例题,综合运用两个完全平方公式是解题关键.2、(1)-4,1,6;(2)2;(3);(4)5【解析】【分析】(1)根据多项式次数,单项式次数的定义,相反数的定义,最小的正整数的定义求解即可;(2)先求出点A落下的位置为数轴上表示4的点的位置,然后根据数轴上两点距离公式求解即可;(3)由题意得:t秒过后,点A表示的数为,点B表示的数为,点C表示的数为,由此根据数轴上两点距离公式求解即可;(4)先求出,再由,得到,由此求解即可.【详解】解:(1)∵a是多项式的次数的相反数,b是最小的正整数,单项式的次数为c,∴,,;故答案为:-4,1,6;(2)∵将数轴在点O折叠,∴点A落下的位置为数轴上表示4的点的位置,∵点C表示的数是6,∴点A落下的位置与点C的距离为6-4=2,故答案为:2;(3)由题意得:t秒过后,点A表示的数为,点B表示的数为,点C表示的数为,∴,,故答案为:,;(4)由(3)可得,∵,∴,解得.【点睛】本题主要考查了整式的加减计算,用数轴表示有理数,数轴上两点的距离,解一元一次方程,单项式和多项式次数的定义等等,熟知相关知识是解题的关键.3、,【解析】【分析】先去括号,然后合并同类项,最后将代入求解即可.【详解】解:,当时,原式.【点睛】此题考查了整式的混合运算化简求值问题,熟练掌握去括号、合并同类项法则是解本题的关键.4、(1)证明见解析;(2)①;②或或【解析】【分析】(1)列代数表示,再合并同类项,再利用乘法的分配律进行变形,从而可得答案;(2)①由,可得一定是7的因数,从而可得答案;②由能被7整除,可得一定是7的因数,而都为至的正整数,从而可得答案.【详解】解:(1) 一定是的倍数.(2)① ,而不是的因数,所以一定是7的因数,令 则 故答案为:(答案不唯一)② 能被7整除,所以一定是7的因数,而都为至的正整数,则a,b,c三个数必须满足的数量关系为:或或【点睛】本题考查的是列代数式,乘法的分配律的应用,合并同类项,整除的含义,掌握“用代数式表示一个三位数”是解本题的关键.5、【解析】【分析】根据整式的乘法运算法则、合并同类项法则进行计算即可.【详解】解:==.【点睛】本题考查整式的乘除、合并同类项,熟练掌握运算法则是解答的关键.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时训练,共18页。试卷主要包含了下面说法正确的是,下列关于整式的说法错误的是,下列去括号正确的是.等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步练习题,共16页。试卷主要包含了下列运算正确的是,下列去括号正确的是.等内容,欢迎下载使用。
这是一份2021学年第六章 整式的运算综合与测试同步达标检测题,共20页。试卷主要包含了下列运算正确的是,如果a﹣4b=0,那么多项式2,用“※”定义一种新运算,下列各式运算的结果可以表示为等内容,欢迎下载使用。