初中沪科版第26章 概率初步综合与测试练习
展开沪科版九年级数学下册第26章概率初步定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )
A. B. C. D.
2、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为( )
A. B. C. D.
3、下列事件中是必然事件的是( )
A.小菊上学一定乘坐公共汽车
B.某种彩票中奖率为1%,买10000张该种票一定会中奖
C.一年中,大、小月份数刚好一样多
D.将豆油滴入水中,豆油会浮在水面上
4、下列事件是必然发生的事件是( )
A.在地球上,上抛的篮球一定会下落
B.明天的气温一定比今天高
C.中秋节晚上一定能看到月亮
D.某彩票中奖率是1%,买100张彩票一定中奖一张
5、下列说法中正确的是( )
A.一组数据2、3、3、5、5、6,这组数据的众数是3
B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1
C.为了解长沙市区全年水质情况,适合采用全面调查
D.画出一个三角形,其内角和是180°为必然事件
6、下列事件中,属于必然事件的是( )
A.射击运动员射击一次,命中10环
B.打开电视,正在播广告
C.投掷一枚普通的骰子,掷得的点数小于10
D.在一个只装有红球的袋中摸出白球
7、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )
A.15 B.12 C.9 D.4
8、下列词语所描述的事件,属于必然事件的是( )
A.守株待兔 B.水中捞月 C.水滴石穿 D.缘木求鱼
9、下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.“心想事成,万事如意”描述的事件是随机事件
D.天气预报显示明天为阴天,那么明天一定不会下雨
10、下列说法不正确的是( )
A.不可能事件发生的概率是0
B.概率很小的事件不可能发生
C.必然事件发生的概率是1
D.随机事件发生的概率介于0和1之间
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.
2、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为,则袋中白球的个数是________.
3、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是______.
4、用黑白两种全等的等腰直角三角形地砖铺成如图所示的方形地面,一只小虫在方形地面上任意爬行,并随机停留在方形地面某处,则小虫停留在黑色区域的概率是______.
5、某射击运动员在同一条件下的射击成绩记录如下(结果保留小数点后两位):
射击的次数 | 20 | 40 | 100 | 200 | 400 | 1000 |
“射中9环以上”的次数 | 15 | 33 | 78 | 158 | 321 | 801 |
“射中9环以上”的频率 | 0.76 | 0.83 | 0.78 | 0.79 | 0.80 | 0.80 |
根据试验所得数据,估计“射中9环以上”的概率是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、在“双减”政策下,某学校自主开设了A书法、B篮球、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.若小明和小刚两位同学各计划选修一门课程,请用列表或树状图求他们两人恰好同时选修球类的概率.
2、不透明的盒子中有四个形状、大小、质地完全相同的小球,标号分别为1, 2,3, 4.
(1)从盒子中随机摸出一个小球,标号是奇数的概率是 ;
(2)先从盒子中随机摸出一个小球,放回后摇匀,再随机摸出一个小球,记两次摸出球的标号之和为m,则m可能取2~8中的任何一个整数,分析哪个整数出现的可能性最大.
3、某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:
请结合图中所给信息,解答下列问题
(1)本次调查的学生共有 人;
(2)扇形统计图中表示D选项的扇形圆心角的度数是 ,并把条形统计图补充完整;
(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
4、国庆期间,某电影院上映了《长津湖》《我和我父辈》《五个扑水的少年》三部电影.甲、乙两同学从中选取一部电影观看.求甲、乙两同学选取同一部电影的概率.
5、有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.
(1)求两次摸出的球的标号相同的概率;
(2)求两次摸出的球的标号的和等于4的概率.
-参考答案-
一、单选题
1、A
【分析】
根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可
【详解】
解:∵总可能结果有4种,摸到标号大于2的结果有2种,
∴从袋子中任意摸出1个球,摸到标号大于2的概率是
故选A
【点睛】
本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.
2、C
【分析】
从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.
【详解】
解:∵装有7个只有颜色不同的球,其中4个黑球,
∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.
故选:C.
【点睛】
本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
3、D
【分析】
必然事件就是一定发生的事件,根据定义即可解答.
【详解】
解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;
B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;
C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;
D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.
故选:D.
【点睛】
用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、A
【分析】
根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.
【详解】
解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;
B、明天的气温一定比今天的高,是随机事件,不符合题意;
C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;
D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.
故选:A.
【点睛】
本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.
5、D
【分析】
根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.
【详解】
A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;
B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;
C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;
D. 画出一个三角形,其内角和是180°为必然事件,正确;
故选D.
【点睛】
此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.
6、C
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、射击运动员射击一次,命中10环,是随机事件;
B、打开电视,正在播广告,是随机事件;
C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;
D、在一个只装有红球的袋中摸出白球,是不可能事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、A
【分析】
由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.
【详解】
∵摸到红球的频率稳定在20%,
∴摸到红球的概率为20%,
而a个小球中红球只有3个,
∴摸到红球的频率为.解得.
故选A.
【点睛】
此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.
8、C
【分析】
根据必然事件就是一定发生的事件逐项判断即可.
【详解】
A.守株待兔是随机事件,故该选项不符合题意;
B.水中捞月是不可能事件,故该选项不符合题意;
C.水滴石穿是必然事件,故该选项符合题意;
D.缘木求鱼是不可能事件,故该选项不符合题意.
故选:C.
【点睛】
本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.
9、C
【详解】
解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;
C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;
D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;
故选:C
【点睛】
本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
10、B
【分析】
根据概率的意义分别判断后即可确定正确的选项.
【详解】
解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;
B. 概率很小的事件也可能发生,故该选项不正确,符合题意;
C. 必然事件发生的概率是1,故该选项正确,不符合题意;
D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;
故选B
【点睛】
本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.
二、填空题
1、
【分析】
根据二次函数的性质,对称轴为,进而可得同号,根据列表法即可求得二次函数的对称轴在轴左侧的概率
【详解】
解:二次函数的对称轴在轴左侧
对称轴为,即同号,
列表如下
| ||||
| ||||
| ||||
|
共有12种等可能结果,其中同号的结果有4种
则二次函数的对称轴在轴左侧的概率为
故答案为:
【点睛】
本题考查了二次函数图象的性质,列表法求概率,掌握二次函数的图象与系数的关系以及列表法求概率是解题的关键.
2、6
【分析】
随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数.
【详解】
解:记摸出一个球是红球为事件
白球有个
故答案为:.
【点睛】
本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.
3、
【分析】
根据题意,分,时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率.
【详解】
解:当时,该方程不是一元二次方程,
当时,
解得
时,关于x的一元二次方程有实数解
随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是
故答案为:
【点睛】
本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
4、##
【分析】
先由图得出地砖的总数及黑色地砖的块数,让黑色地砖的块数除以地砖总数即可.
【详解】
解:可观察图形,黑色地砖与白色地砖的面积相等,停在黑色和白色地砖上的概率是相同的,由此可知小虫停在黑地砖上的概率为 ,
故答案为:
【点睛】
本题考查了几何概率,掌握“几何概率=相应的面积与总面积之比.”是解本题的关键.
5、0.8
【分析】
大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】
解:根据表格数据可知:
根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.
故答案为:0.8.
【点睛】
本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
三、解答题
1、
【分析】
画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修球类的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
共有16种等可能的结果数,其中他们两人恰好选修球类的结果数为4,
所以他们两人恰好选修球类的概率==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
2、(1);(2)出现5的可能性最大.
【分析】
(1)利用列举法求解即可;
(2)先列表找到所有的等可能性的结果数,然后找到每个整数出现的结果数,由此求解即可.
【详解】
解:(1)从四个小球中随机摸出一个球摸出的小球的编号可以为1、2、3、4一共四种等可能性的结果数,其中摸到标号为奇数的有:摸到标号为1的和摸到标号为2的一共两种,
∴从盒子中随机摸出一个小球,标号是奇数的概率是;
(2)列表如下:
| 第一次 | ||||
1 | 2 | 3 | 4 | ||
第 二 次 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | |
3 | 4 | 5 | 6 | 7 | |
4 | 5 | 6 | 7 | 8 |
由表格可知一共有16种等可能性的结果数,其中两次标号之和为2的有1种,两次标号之和为3的有2种,两次标号之和为4的有3种,两次标号之和为5的有4种,两次标号之和为6的有3种,两次标号之和为7的有2种,两次标号之和为8的有1种,
∴出现5的可能性最大.
【点睛】
本题主要考查了列举法求解概率,树状图法或列举法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.
3、(1)100;(2)144°,见解析;(3)见解析,
【分析】
(1)根据器乐的占比和人数进行求解即可;
(2)用360°×(D选项的人数)÷总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;
(3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可.
【详解】
解:(1)由题意得:本次调查的学生共有:30÷30%=100(人);
故答案为:100;
(2)表示D选项的扇形圆心角的度数是,
喜欢B类项目的人数有:100-30-10-40=20(人),
补全条形统计图如图1所示:
故答案为:144°;
(3)画树形图如图2所示:
共有12种情况,被选取的两人恰好是甲和乙有2种情况,
则被选取的两人恰好是甲和乙的概率是.
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图.
4、
【分析】
通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可.
【详解】
解:把《长津湖》《我和我父辈》《五个扑水的少年》三部电影分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,
∴甲、乙两同学选取同一部电影的概率为.
【点睛】
本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比.
5、(1);(2)
【分析】
(1)先列出树状图,找到所有的等可能性的结果数,然后找到两次摸出的球的标号相同的结果数,最后利用概率公式求解即可;
(2)根据(1)所列树状图,找到两次摸出的球的标号和为4的结果数,利用概率公式求解即可.
【详解】
解:(1)列树状图如下所示:
由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号相同的结果数有4种,
∴(两次摸出的球的标号相同);
(2)由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号的和为4的结果数有(1,3),(2,2),(3,1)3种,
∴(两次摸出的球的标号的和等于4).
【点睛】
本题主要考查了树状图法或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率.
数学九年级下册第24章 圆综合与测试一课一练: 这是一份数学九年级下册第24章 圆综合与测试一课一练
沪科版九年级下册第26章 概率初步综合与测试同步训练题: 这是一份沪科版九年级下册第26章 概率初步综合与测试同步训练题,共20页。试卷主要包含了下列事件是必然事件的是,一个不透明的口袋里有红等内容,欢迎下载使用。
初中沪科版第26章 概率初步综合与测试精练: 这是一份初中沪科版第26章 概率初步综合与测试精练,共19页。试卷主要包含了下列事件是必然事件的是,下列说法正确的是等内容,欢迎下载使用。