初中沪科版第26章 概率初步综合与测试精练
展开这是一份初中沪科版第26章 概率初步综合与测试精练,共19页。试卷主要包含了下列事件是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将7个分别标有数字﹣3,﹣2,﹣1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数y=﹣x2﹣3x+m﹣2与x轴有交点,且关于x的分式方程有解的概率是( )
A. B. C. D.
2、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )
A.一班抽到的序号小于6 B.一班抽到的序号为9
C.一班抽到的序号大于0 D.一班抽到的序号为7
3、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是
B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球
C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同
D.在同一年出生的400个同学中至少会有2个同学的生日相同
4、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个.
A.12 B.15 C.18 D.54
5、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是( )
A.1 B.1 C. D.1
6、下列事件是必然事件的是( )
A.明天会下雨
B.抛一枚硬币,正面朝上
C.通常加热到100℃,水沸腾
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯
7、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )
A. B. C. D.
8、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )
A. B. C. D.
9、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
10、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的结果如表所示:
实验的稻种数n∕粒 | 800 | 800 | 800 | 800 | 800 |
发芽的稻种数m∕粒 | 763 | 757 | 761 | 760 | 758 |
发芽的频率 | 0.954 | 0.946 | 0.951 | 0.950 | 0.948 |
在与实验条件相同的情况下,估计种一粒这样的稻种发芽的概率为 _____(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _____万粒.
2、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是______.
3、现有四张分别标有数字﹣2,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.
4、从分别标有数字﹣3,﹣2,﹣1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值不小于2的概率是_______.
5、在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为_____.
三、解答题(5小题,每小题10分,共计50分)
1、同时掷两枚质地均匀的骰子,两枚骰子分别记为第1枚和第2枚,下表列举出了所有可能出现的结果.
第2枚 第1枚 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
(1)由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性______(填“相等”或者“不相等”);
(2)计算下列事件的概率:
①两枚骰子的点数相同;
②至少有一枚骰子的点数为3.
2、某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
八年级2班参加球类活动人数统计表 | |||||
项目 | 篮球 | 足球 | 乒乓球 | 排球 | 羽毛球 |
人数 | a | 6 | 5 | 7 | 6 |
根据图中提供的信息,解答下列问题:
(1)a= ,b= ;
(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;
(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
3、一个不透明的口袋里装有分别标有汉字“书”、“香”、“华”、“一”的四个小球,除字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.
(1)若从中任取一个球,球上的汉字刚好是“书”的概率为 ;
(2)从中随机取出两球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“华一”的概率.
4、有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数,2;乙口袋中装有三个相同的球,它们分别写有数,,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为;再从乙口袋中随机取出一个球,其上的数记为.若,小明胜;若,为平局;若,小刚胜.
(1)若,用树状图或列表法分别求出小明、小刚获胜的概率;
(2)当为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数的值.
5、不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,请用画树状图(或列表)的方法,求一次摸出两个球“都是白球”的概率.
-参考答案-
一、单选题
1、B
【分析】
根据抛物线与x轴有交点,计算出,根据分式方程有解,计算出,再在中找出满足的数,利用概率公式求解.
【详解】
解:与x轴有交点,
则,
解得:,
有解,
则,
即,
在中,满足且有:,
共5个,
有概率公式知概率为:,
故选:B.
【点睛】
本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出的取值范围后,确定满足条件的个数.
2、C
【分析】
必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.
【详解】
解:A中一班抽到的序号小于是随机事件,故不符合要求;
B中一班抽到的序号为是不可能事件,故不符合要求;
C中一班抽到的序号大于是必然事件,故符合要求;
D中一班抽到的序号为是随机事件,故不符合要求;
故选C.
【点睛】
本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.
3、D
【分析】
A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.
【详解】
解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;
B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;
C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;
D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;
故选D.
【点睛】
本题考察了概率.解题的关键与难点在于了解概率概念与求解.
4、A
【分析】
根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.
【详解】
解:设有红色球x个,
根据题意得:,
解得:x=12,
经检验,x=12是分式方程的解且符合题意.
故选:
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.
5、A
【分析】
设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.
【详解】
解:如图所示,设正方形ABCD的边长为a,
∵四边形ABCD是正方形,
∴∠C=90°,
∴
,
∴,
∴石子落在阴影部分的概率是,
故选A.
【点睛】
本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.
6、C
【分析】
根据必然事件就是一定发生的事件逐项判断即可.
【详解】
A.明天会下雨,属于随机事件,故该选项不符合题意;
B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;
C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.
7、C
【分析】
可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.
【详解】
画“树形图”如图所示:
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为;
故选C.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解
8、C
【分析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,
∴随机抽取一个球是黄球的概率是.
故选C.
【点睛】
本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.
9、D
【分析】
根据随机事件的定义,对选项中的事件进行判断即可.
【详解】
解:A.“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;
B.“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;
C.“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;
D.“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键.
10、B
【分析】
用黑色的小球个数除以球的总个数即可解题.
【详解】
解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,
故摸出的小球是黑色的概率是:
故选:B.
【点睛】
本题考查概率公式,解题关键是掌握随机事件发生的概率.
二、填空题
1、0.95 1.9
【分析】
(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;
(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数×发芽率.
【详解】
解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;
(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:2×0.95=1.9(万).
故答案为:(1)0.95;(2)1.9.
【点睛】
本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键.
2、
【分析】
根据概率的计算公式计算.
【详解】
∵一枚质地均匀的正方体骰子有6种等可能性,
∴朝上一面的点数是“5”的概率是,
故答案为:.
【点睛】
本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键.
3、
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图如下所示:
由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,
∴P两次抽出的卡片上所标数字之和为正数,
故答案为:.
【点睛】
本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.
4、
【分析】
由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有3种情况,直接利用概率公式求解即可求得答案.
【详解】
解:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,一共有七中可能情况,
其中所抽卡片上的数的绝对值不小于2的有﹣3,-2,2,3四种情况,
∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:.
故答案为.
【点睛】
本题考查列举法求概率,掌握列举法求概率方法,熟记概率公式是解题关键.
5、
【分析】
根据简单概率的概率公式进行计算即可,概率=所求情况数与总情况数之比.
【详解】
解:共有5中等可能结果,其中大于2的有3种,则从中随机摸出一个小球,其标号大于2的概率为
故答案为:
【点睛】
本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.
三、解答题
1、(1)相等;(2)①;②
【分析】
(1)根据两枚骰子质地均匀,可知同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;
(2)①先根据表格得到两枚骰子的点数相同(记为事件A)的结果有6种,然后利用概率公式求解即可;
②先根据表格得到至少有一枚骰子的点数为3(记为事件B)的结果有11种,然后利用概率公式求解即可.
【详解】
解:(1)∵两枚骰子质地均匀,
∴同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;
故答案为:相等;
(2)①由表格可知两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),
∴
②由表格可知至少有一枚骰子的点数为3(记为事件B)的结果有11种,
∴.
【点睛】
本题主要考查了列表法求解概率,熟知列表法求解概率是解题的关键.
2、(1)16,17.5;(2)90;(3)
【分析】
(1)首先求得总人数,然后根据百分比的定义求解;
(2)利用总数乘以对应的百分比即可求解;
(3)利用列举法,根据概率公式即可求解.
【详解】
解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,
∴b=17.5,
故答案为:16,17.5;
(2)600×[6÷(5÷12.5%)]=90(人),
故答案为:90;
(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,
∴则P(恰好选到一男一女)==.
【点睛】
本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
3、(1);(2)
【分析】
(1)根据概率公式计算即可;
(2)画出树状图计算即可;
【详解】
(1)由题可得,球上的汉字刚好是“书”的概率为;
故答案是:;
(2)根据题意画出树状图如下:
则取出的两个球上的汉字能组成“华一”的概率为.
【点睛】
本题主要考查了概率公式和树状图法求概率,准确画图计算是解题的关键.
4、(1)见详解;(2)m=-1
【分析】
(1)先画出树状图,再利用概率公式计算,即可求解;
(2)取一个符合条件的m的值,即可.
【详解】
解:(1)画树状图如下:
∵一共有6种可能的结果,,有2种可能,,有3种可能,
∴小明获胜的概率=2÷6=,小刚获胜的概率=3÷6=;
(2)当m=-1时,画树状图如下:
此时,小明和小刚获胜的概率相同.
【点睛】
本题主要考查等可能时间的概率,掌握画树状图是解题的关键.
5、
【分析】
根据题意用列表法列出所有等可能的情况,找出两个球“都是白球”的情况,然后根据概率公式求解即可.
【详解】
解:由题意可得,所有等可能的情况如下:
| 白色1 | 白色2 | 红色 |
白色1 |
| (白色2,白色1) | (红色,白色1) |
白色2 | (白色1,白色2) |
| (红色,白色2) |
红色 | (白色1,红色) | (白色2,红色) |
|
由表格可知,共有6种等可能的情况,其中两个球“都是白球”的有2种情况,
∴一次摸出两个球“都是白球”的概率=.
【点睛】
本题考查的是用列表法或画树状图法求概率.解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份数学九年级下册第24章 圆综合与测试习题,共30页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。
这是一份沪科版九年级下册第26章 概率初步综合与测试课后复习题,共19页。试卷主要包含了下列说法中正确的是,下列说法正确的是,在一个不透明的布袋中,红色,下列说法正确的有等内容,欢迎下载使用。