初中数学沪科版九年级下册第26章 概率初步综合与测试课后测评
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后测评,共19页。试卷主要包含了有两个事件,事件,下列事件中,属于必然事件的是,下列事件是必然事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件中,属于不可能事件的是( )
A.射击运动员射击一次,命中靶心
B.从一个只装有白球和红球的袋中摸球,摸出黄球
C.班里的两名同学,他们的生日是同一天
D.经过红绿灯路口,遇到绿灯
2、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是( )
A.的值一定是
B.的值一定不是
C.m越大,的值越接近
D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性
3、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( ).
A. B. C. D.
4、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )
A.(1)(2)都是随机事件 B.(1)(2)都是必然事件
C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件
5、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )
A. B. C. D.
6、下列事件中,属于必然事件的是( )
A.射击运动员射击一次,命中10环
B.打开电视,正在播广告
C.投掷一枚普通的骰子,掷得的点数小于10
D.在一个只装有红球的袋中摸出白球
7、下列事件是必然事件的是( )
A.抛一枚硬币正面朝上
B.若a为实数,则a2≥0
C.某运动员射击一次击中靶心
D.明天一定是晴天
8、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )
A. B. C. D.
9、下列事件中,是必然事件的是( )
A.刚到车站,恰好有车进站
B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球
C.打开九年级上册数学教材,恰好是概率初步的内容
D.任意画一个三角形,其外角和是360°
10、将7个分别标有数字﹣3,﹣2,﹣1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数y=﹣x2﹣3x+m﹣2与x轴有交点,且关于x的分式方程有解的概率是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个不透明的袋子里有3个红球和5个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_________(填“大于”“小于”或“等于”)是白球的可能性.
2、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为 _____.
3、某射击运动员在同一条件下的射击成绩记录如下(结果保留小数点后两位):
射击的次数 | 20 | 40 | 100 | 200 | 400 | 1000 |
“射中9环以上”的次数 | 15 | 33 | 78 | 158 | 321 | 801 |
“射中9环以上”的频率 | 0.76 | 0.83 | 0.78 | 0.79 | 0.80 | 0.80 |
根据试验所得数据,估计“射中9环以上”的概率是 _____.
4、在一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,如果从中随机摸出一个,那么摸到黄球的可能性大小是________.
5、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为,则袋中白球的个数是________.
三、解答题(5小题,每小题10分,共计50分)
1、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由
2、同时掷两枚质地均匀的骰子,两枚骰子分别记为第1枚和第2枚,下表列举出了所有可能出现的结果.
第2枚 第1枚 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
(1)由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性______(填“相等”或者“不相等”);
(2)计算下列事件的概率:
①两枚骰子的点数相同;
②至少有一枚骰子的点数为3.
3、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:
(1)甲、乙都选择(窗花剪纸)课程的概率;
(2)甲、乙选择同一门课程的概率.
4、从长为2cm,3cm,4cm,5cm的4条线段中随机取出3条线段,问随机取出的3条线段能围成一个三角形的概率是多少?
5、根据公安部交管局下发的通知,春节前开展一次“一带一盔”安全守护行动,其中要求骑行摩托车、电动车需要佩戴头盔,某日交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:
年龄x(岁) | 人数 | 男性占比 |
x<20 | 4 | 50% |
20≤x<30 | m | 60% |
30≤x<40 | 25 | 60% |
40≤x<50 | 8 | 75% |
x≥50 | 3 | 100% |
(1)统计表中m的值为 ;
(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为 ;
(3)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到1名男性和1名女性的概率.
-参考答案-
一、单选题
1、B
【分析】
根据不可能事件的意义,结合具体的问题情境进行判断即可.
【详解】
解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;
B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;
C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;
D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.
2、D
【分析】
根据频率与概率的关系以及随机事件的定义判断即可
【详解】
投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;
故选:D
【点睛】
本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.
3、B
【分析】
先找出滑冰项目图案的张数,再根据概率公式即可得出答案.
【详解】
解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,
∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;
故选:B.
【点睛】
本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
4、D
【分析】
必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.
【详解】
解:事件(1):购买1张福利彩票,中奖,是随机事件,
事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,
故选D
【点睛】
本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.
5、C
【分析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,
∴随机抽取一个球是黄球的概率是.
故选C.
【点睛】
本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.
6、C
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、射击运动员射击一次,命中10环,是随机事件;
B、打开电视,正在播广告,是随机事件;
C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;
D、在一个只装有红球的袋中摸出白球,是不可能事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、B
【分析】
根据必然事件的定义对选项逐个判断即可.
【详解】
解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;
B、若a为实数,则a2≥0,是必然事件,符合题意;
C、某运动员射击一次击中靶心,是随机事件,不符合题意;
D、明天一定是晴天,是随机事件,不符合题意,
故选:B
【点睛】
本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.
8、B
【分析】
根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.
【详解】
解:列表得:
| 锁1 | 锁2 |
钥匙1 | (锁1,钥匙1) | (锁2,钥匙1) |
钥匙2 | (锁1,钥匙2) | (锁2,钥匙2) |
钥匙3 | (锁1,钥匙3) | (锁2,钥匙3) |
由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,
则P(一次打开锁).
故选:B.
【点睛】
本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.
9、D
【分析】
根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.
【详解】
解:A、刚到车站,恰好有车进站是随机事件;
B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;
C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;
D、任意画一个三角形,其外角和是360°是必然事件;
故选D.
【点睛】
本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.
10、B
【分析】
根据抛物线与x轴有交点,计算出,根据分式方程有解,计算出,再在中找出满足的数,利用概率公式求解.
【详解】
解:与x轴有交点,
则,
解得:,
有解,
则,
即,
在中,满足且有:,
共5个,
有概率公式知概率为:,
故选:B.
【点睛】
本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出的取值范围后,确定满足条件的个数.
二、填空题
1、小于
【分析】
根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可.
【详解】
解:∵袋子里有3个红球和5个白球,
∴红球的数量小于白球的数量,
∴从中任意摸出1只球,是红球的可能性小于白球的可能性.
故答案为:小于.
【点睛】
本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.
2、
【分析】
抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率.
【详解】
解:∵抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,
∴从中任意抽取一张,抽出的牌点数小于5的概率是: .
故答案为:.
【点睛】
此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.
3、0.8
【分析】
大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】
解:根据表格数据可知:
根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.
故答案为:0.8.
【点睛】
本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
4、
【分析】
从袋中随机摸出一个球共有8种等可能的结果,其中摸到黄球有3种结果,再利用概率公式即可得.
【详解】
解:由题意,从袋中随机摸出一个球共有种等可能的结果,其中摸到黄球有3种结果,
则如果从中随机摸出一个,那么摸到黄球的可能性大小是,
故答案为:.
【点睛】
本题考查了简单事件的概率计算,熟练掌握概率公式是解题关键.
5、6
【分析】
随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数.
【详解】
解:记摸出一个球是红球为事件
白球有个
故答案为:.
【点睛】
本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.
三、解答题
1、这个游戏对双方是不公平的,理由见解析
【分析】
首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.
【详解】
解:这个游戏对双方是不公平的.
如图,
∵一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,
∴P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平.
【点睛】
本题考查的是游戏的公平性.解决本题需要正确画出树状图进行解题.用到的知识点为:概率=所求情况数与总情况数之比.
2、(1)相等;(2)①;②
【分析】
(1)根据两枚骰子质地均匀,可知同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;
(2)①先根据表格得到两枚骰子的点数相同(记为事件A)的结果有6种,然后利用概率公式求解即可;
②先根据表格得到至少有一枚骰子的点数为3(记为事件B)的结果有11种,然后利用概率公式求解即可.
【详解】
解:(1)∵两枚骰子质地均匀,
∴同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;
故答案为:相等;
(2)①由表格可知两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),
∴
②由表格可知至少有一枚骰子的点数为3(记为事件B)的结果有11种,
∴.
【点睛】
本题主要考查了列表法求解概率,熟知列表法求解概率是解题的关键.
3、(1) ;(2)
【分析】
(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;
(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.
【详解】
解:(1)由题意列表,
| A | B | C | D |
A | A,A | A,B | A,C | A,D |
B | B,A | B,B | B,C | B,D |
C | C,A | C,B | C,C | C,D |
D | D,A | D,B | D,C | D,D |
由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,
所以甲、乙都选择(窗花剪纸)课程的概率为.
(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,
所以甲、乙选择同一门课程的概率为.
【点睛】
本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.
4、
【分析】
先利用列举法求出所有4种可能的结果数,再分别根据三角形三边的关系找出符合条件的结果数,最后根据概率公式计算即可.
【详解】
解:有4种可能的结果数,它们是:2cm、4cm、5cm;2cm、3cm、5cm;3cm、4cm、5cm;2cm、3cm、4cm,
这三条线段能构成一个三角形的结果数为3,
所以这三条线段能构成一个三角形的概率=.
【点睛】
本题主要考查了三角形的三边关系以及概率公式,根据已知确定可能的结果数和符合条件的结果数是解答本题的关键.
5、
(1)10
(2)180°
(3)见解析,
【分析】
(1)根据总数减去表格中其他数据即可求解;
(2)根据年龄在“30≤x<40”的人数占总人数的比例乘以360°即可求解;
(3)用列表法求概率即可.
(1)
故答案为:10
(2)
故答案为:
(3)
设两名男性用表示,两名女性用表示,根据题意,列表如下,
| ||||
| ||||
| ||||
| ||||
|
由上表可知,共有12种等可能的结果,符合条件的结果有8种,
故P(恰好抽到1名男性和1名女性)=
【点睛】
本题考查了求扇形统计图的圆心角的度数,求频数,根据列表法求概率,理解题意,掌握以上知识是解题的关键.
相关试卷
这是一份数学九年级下册第26章 概率初步综合与测试同步练习题,共18页。试卷主要包含了下列事件中,属于必然事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份初中沪科版第26章 概率初步综合与测试测试题,共18页。试卷主要包含了如图,有5张形状,下列事件,你认为是必然事件的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共20页。试卷主要包含了任意掷一枚骰子,下列事件中等内容,欢迎下载使用。