沪科版九年级下册第26章 概率初步综合与测试课时练习
展开这是一份沪科版九年级下册第26章 概率初步综合与测试课时练习,共18页。试卷主要包含了下列事件是随机事件的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件中,属于随机事件的是( )
A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形
B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
C.如果一个三角形有两个角相等,那么两个角所对的边也相等
D.有两组对应边和一组对应角分别相等的两个三角形全等
2、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是
B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球
C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同
D.在同一年出生的400个同学中至少会有2个同学的生日相同
3、下列说法正确的是( ).
A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件
B.“打开电视机,正在播放乒乓球比赛”是必然事件
C.“面积相等的两个三角形全等”是不可能事件
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次
4、下列事件是随机事件的是( )
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
5、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )
A.一班抽到的序号小于6 B.一班抽到的序号为9
C.一班抽到的序号大于0 D.一班抽到的序号为7
6、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法( )
A.有道理,池中大概有1200尾鱼 B.无道理
C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼
7、下列事件中,属于必然事件的是( )
A.射击运动员射击一次,命中10环
B.打开电视,正在播广告
C.投掷一枚普通的骰子,掷得的点数小于10
D.在一个只装有红球的袋中摸出白球
8、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是( )
A. B. C. D.
9、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )
A. B. C. D.
10、 “2022年春节期间,中山市会下雨”这一事件为( )
A.必然事件 B.不可能事件 C.确定事件 D.随机事件
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无差别,从中随机摸出一个小球,则摸到的是红球的概率为___.
2、只有1和它本身两个因数且大于1的自然数叫做质数,我国数学家陈景润在有关质数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从3,5,7,11,13,23这6个质数中随机抽取一个,则抽到个位数是3的可能性是________.
3、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10%,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”______张.
4、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是______.
5、有两个正方体的积木块,如图所示.
下面是小怡投掷某块积木200次的情况统计表:
灰色的面朝上 | 白色的面朝上 |
32次 | 168次 |
根据表中的数据推测,小怡最有可能投掷的是______号积木.
三、解答题(5小题,每小题10分,共计50分)
1、2021年5月26日,长春国际马拉松开赛,小红和小雨参加了该赛事的志愿者服务工作,被随机分配到A“半程马拉松”,B“全程马拉松”,C“五公里”三个项目组.
(1)小雨被分配到C“五公里”项目组的概率为 ;
(2)用画树状图(或列表)的方法,求小红和小雨被分到同一组的概率.
2、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科.某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率.
3、在“双减”政策下,某学校自主开设了A书法、B篮球、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.若小明和小刚两位同学各计划选修一门课程,请用列表或树状图求他们两人恰好同时选修球类的概率.
4、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.
5、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图.
(1) ,类所在扇形的圆心角的度数是 ,并补全频数分布直方图;
(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在范围内的学生人数;
(3)九年级(1)班数学李老师准备从类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率.
类别 | 分数段 | 频数(人数) |
A | ||
B | 16 | |
C | 24 | |
D | 6 |
-参考答案-
一、单选题
1、D
【分析】
根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.
【详解】
A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;
B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;
C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;
D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.
故选:D.
【点睛】
本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.
2、D
【分析】
A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.
【详解】
解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;
B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;
C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;
D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;
故选D.
【点睛】
本题考察了概率.解题的关键与难点在于了解概率概念与求解.
3、A
【分析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【详解】
解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;
B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;
C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;
D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;
故选:A.
【点睛】
本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、B
【分析】
根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.
【详解】
A.抛出的篮球会下落是必然事件,故此选项不符合题意;
B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意;
C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;
D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;
故选B
【点睛】
此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.
5、C
【分析】
必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.
【详解】
解:A中一班抽到的序号小于是随机事件,故不符合要求;
B中一班抽到的序号为是不可能事件,故不符合要求;
C中一班抽到的序号大于是必然事件,故符合要求;
D中一班抽到的序号为是随机事件,故不符合要求;
故选C.
【点睛】
本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.
6、A
【分析】
设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.
【详解】
解:设池中大概有鱼x尾,由题意得:,
解得:,
经检验:是原方程的解;
∴池塘主的做法有道理,池中大概有1200尾鱼;
故选A.
【点睛】
本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.
7、C
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、射击运动员射击一次,命中10环,是随机事件;
B、打开电视,正在播广告,是随机事件;
C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;
D、在一个只装有红球的袋中摸出白球,是不可能事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、B
【分析】
用黑色的小球个数除以球的总个数即可解题.
【详解】
解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,
故摸出的小球是黑色的概率是:
故选:B.
【点睛】
本题考查概率公式,解题关键是掌握随机事件发生的概率.
9、B
【分析】
由题意,只要求出阴影部分与矩形的面积比即可.
【详解】
解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,
由几何概型公式得到最终停在阴影方砖上的概率为:;
故选:B.
【点睛】
本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.
10、D
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,
故选:D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题
1、
【分析】
将红球的个数除以球的总个数即可得.
【详解】
解:根据题意,摸到的不是红球的概率为,
答案为:.
【点睛】
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
2、
【分析】
先利用列举法求出个位数字是3的所有结果数,然后利用概率公式求解即可.
【详解】
解:从3,5,7,11,13,23这6个质数中随机抽取一个数一共有6种等可能性的结果数,其中抽到个位是3的有3,13,23三种结果数,
∴抽到个位数字是3的概率是,
故答案为:.
【点睛】
本题主要考查了概率的计算,熟练掌握列举法进行概率的计算是解决本题的关键.
3、260
【分析】
先求出一等奖的概率,然后利用频数=总数×概率求解即可.
【详解】
解:由题意得:一等奖的概率=,
∴盒子中有“谢谢惠顾”张,
故答案为:260.
【点睛】
本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数×概率.
4、
【分析】
根据概率的计算公式计算.
【详解】
∵一枚质地均匀的正方体骰子有6种等可能性,
∴朝上一面的点数是“5”的概率是,
故答案为:.
【点睛】
本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键.
5、②
【分析】
计算出①号积木、②号积木朝上的面为白色、为灰色的概率,再求出小怡掷200次积木的实验频率,进行判断即可.
【详解】
①号积木由于三面灰色,三面白色,因此随机掷1次,朝上的面是白色、灰色的可能性都是,
②号积木由于一面灰色,五面白色,因此随机掷1次,朝上的面是灰色的可能性都是,是白色的可能性为,
由表格中的数据可得,小怡掷200次积木得到朝上的面为灰色的频率为,白色的频率为,
故选择的是②号积木,
理由:小怡掷200次积木的实验频率接近于②号积木相应的概率.
故答案为②
【点睛】
本题主要考查频率与概率的关系,解题的关键是正确理解实验频率与概率的关系.
三、解答题
1、(1);(2)
【分析】
(1)根据概率公式即可求解;
(2)由题画出树状图,用小红和小雨被分到同一组的结果数比总的结果数即可得出答案.
【详解】
(1)∵小雨可分配到A、B、C三个项目组,
∴小雨被分配到C“五公里”项目组的概率为,
故答案为:;
(2)画出树状图如下所示:
∴小红和小雨被分到同一组的有3种结果,总的有9种,
∴小红和小雨被分到同一组的概率为.
【点睛】
本题考查用列表格或树状图求概率,掌握树状图的画法和概率的求法是解题的关键.
2、
【分析】
用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解.
【详解】
解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,
,
由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=.
【点睛】
本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.
3、
【分析】
画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修球类的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
共有16种等可能的结果数,其中他们两人恰好选修球类的结果数为4,
所以他们两人恰好选修球类的概率==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
4、
(1);
(2)两次都是红球的概率为
【分析】
(1)根据列举法将所有可能列出,然后找出符合条件的可能,计算即可得;
(2)四个球简写为“红1,红2,黄,蓝”,利用列表法列出所有出现的可能,从中找到符合条件的结果数,再根据概率公式计算可.
(1)
解:搅匀后从中任意摸出1个球,有四种可能:红球、红球、黄球、蓝球,其中是红球的可能有两种,
∴,
其中是黄球的可能有一种,
∴,
故答案为:;;
(2)
四个球简写为“红1,红2,黄,蓝”,列表法为:
| 红1 | 红2 | 黄 | 蓝 |
红1 | (红1,红1) | (红1,红2) | (红1,黄) | (红1,蓝) |
红2 | (红2,红1) | (红2,红2) | (红2,黄) | (红2,蓝) |
黄 | (黄,红1) | (黄,红2) | (黄,黄) | (黄,蓝) |
蓝 | (蓝,红1) | (蓝,红2) | (蓝,黄) | (蓝,蓝) |
共有16种等可能的结果数,其中两次都是红球的有4种结果,
所以两次都是红球的概率为:.
【点睛】
题目主要考查利用列表法或树状图法求概率,理解题意,熟练掌握列表法或树状图法是解题关键.
5、(1)2,,图见解析;(2)450人;(3).
【分析】
(1)先根据类的信息可求出调查的总人数,由此即可得出的值,再求出类所占百分比,然后乘以可得圆心角的度数,最后根据类的人数补全频数分布直方图即可;
(2)利用720乘以成绩在范围内的学生所占百分比即可得;
(3)先画出树状图,从而可得随机抽取2人进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得.
【详解】
解:(1)调查的总人数为(人),
则,
类所在扇形的圆心角的度数是,
故答案为:2,,
补全频数分布直方图如图所示:
(2)(人),
答:估计该校成绩在范围内的学生人数为450人;
(3)把类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:
由图可知,共有30种等可能的结果,恰好只选中其中1名留守学生进行经验交流的结果有16种,
则所求的概率为,
答:恰好只选中其中1名留守学生进行经验交流的概率为.
【点睛】
本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键.
相关试卷
这是一份数学九年级下册第26章 概率初步综合与测试同步练习题,共18页。试卷主要包含了下列事件中,属于必然事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后测评,共19页。试卷主要包含了有两个事件,事件,下列事件中,属于必然事件的是,下列事件是必然事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共17页。试卷主要包含了下列事件中,属于必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。