![2021-2022学年度沪科版九年级数学下册第26章概率初步单元测试试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12686759/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第26章概率初步单元测试试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12686759/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第26章概率初步单元测试试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12686759/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第26章 概率初步综合与测试单元测试同步达标检测题
展开这是一份初中数学第26章 概率初步综合与测试单元测试同步达标检测题,共19页。试卷主要包含了下列事件是必然事件的是,下列事件是必然发生的事件是,以下事件为随机事件的是,下列事件中,属于必然事件的是,若a是从“等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )
A. B. C. D.
2、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率
3、下列事件中,是必然事件的是( )
A.同位角相等
B.打开电视,正在播出特别节目《战疫情》
C.经过红绿灯路口,遇到绿灯
D.长度为4,6,9的三条线段可以围成一个三角形.
4、下列事件是必然事件的是( )
A.同圆中,圆周角等于圆心角的一半
B.投掷一枚均匀的硬币100次,正面朝上的次数为50次
C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天
D.把一粒种子种在花盆中,一定会发芽
5、下列事件是必然发生的事件是( )
A.在地球上,上抛的篮球一定会下落
B.明天的气温一定比今天高
C.中秋节晚上一定能看到月亮
D.某彩票中奖率是1%,买100张彩票一定中奖一张
6、以下事件为随机事件的是( )
A.通常加热到100℃时,水沸腾
B.篮球队员在罚球线上投篮一次,未投中
C.任意画一个三角形,其内角和是360°
D.半径为2的圆的周长是
7、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
8、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )
A.1 B. C. D.
9、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )
A.一班抽到的序号小于6 B.一班抽到的序号为9
C.一班抽到的序号大于0 D.一班抽到的序号为7
10、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有三辆车按1,2,3编号,苗苗和珊珊两人可任意选坐一辆车,则两人同坐一辆车的概率为___.
2、在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.
3、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n | 1000 | 1500 | 2500 | 4000 | 8000 | 15000 | 20000 | 30000 |
成活的棵数m | 865 | 1356 | 2220 | 3500 | 7056 | 13170 | 17580 | 26430 |
成活的频率 | 0.865 | 0.904 | 0.888 | 0.875 | 0.882 | 0.878 | 0.879 | 0.881 |
估计该种幼树在此条件下移植成活的概率为_______.
4、现有四张分别标有数字﹣2,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.
5、在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是______
三、解答题(5小题,每小题10分,共计50分)
1、2021年5月26日,长春国际马拉松开赛,小红和小雨参加了该赛事的志愿者服务工作,被随机分配到A“半程马拉松”,B“全程马拉松”,C“五公里”三个项目组.
(1)小雨被分配到C“五公里”项目组的概率为 ;
(2)用画树状图(或列表)的方法,求小红和小雨被分到同一组的概率.
2、2021年是中国辛丑牛年,小明将收集到的以下3张牛年邮票分别放到A、B、C三个完全相同的不透明盒子中,现从中随机抽取一个盒子.
(1)“小明抽到面值为80分的邮票”是______事件(填“随机”“不可能”或“必然”);
(2)小明先随机抽取一个盒子记下邮票面值后将盒子放回,再随机抽取一个盒子记下邮票面值,用画树状图(或列表)的方法,求小明抽到的两个盒子里邮票的面值恰好相等的概率.
3、一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别.有如下两个活动:
活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;
活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为.
请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想.
4、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买.
(1)甲从中随机选取A套餐的概率是 ;
(2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率.
5、从长为2cm,3cm,4cm,5cm的4条线段中随机取出3条线段,问随机取出的3条线段能围成一个三角形的概率是多少?
-参考答案-
一、单选题
1、B
【分析】
列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.
【详解】
解:列表如下:
| 1 | 2 |
1 | 2 | 3 |
2 | 3 | 4 |
由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,
所以两次摸出的小球的标号之和是3的概率为,
故选:B.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
2、B
【分析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
【详解】
解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;
B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;
C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;
D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.
故选:B.
【点睛】
此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.
3、D
【分析】
根据必然事件的概念即可得出答案.
【详解】
解:∵同位角不一定相等,为随机事件,
∴A选项不合题意,
∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,
∴B选项不合题意,
∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,
∴C选项不合题意,
∵4+6>9,
∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.
∴D选项符合题意,
故选:D.
【点睛】
本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.
4、C
【分析】
直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.
【详解】
A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;
B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;
C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;
D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、A
【分析】
根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.
【详解】
解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;
B、明天的气温一定比今天的高,是随机事件,不符合题意;
C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;
D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.
故选:A.
【点睛】
本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.
6、B
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.通常加热到100℃时,水沸腾是必然事件;
B.篮球队员在罚球线上投篮一次,未投中是随机事件;
C.任意画一个三角形,其内角和是360°是不可能事件;
D.半径为2的圆的周长是是必然事件;
故选:B.
【点睛】
考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、B
【分析】
根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.
【详解】
解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,
a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,
关于x的方程为一元二次方程的概率是,
故选择B.
【点睛】
本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.
9、C
【分析】
必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.
【详解】
解:A中一班抽到的序号小于是随机事件,故不符合要求;
B中一班抽到的序号为是不可能事件,故不符合要求;
C中一班抽到的序号大于是必然事件,故符合要求;
D中一班抽到的序号为是随机事件,故不符合要求;
故选C.
【点睛】
本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.
10、A
【分析】
用红球的个数除以所有球的个数即可求得抽到红球的概率.
【详解】
解:∵共有5个球,其中红球有2个,
∴P(摸到红球)=,
故选:A.
【点睛】
此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.
二、填空题
1、
【分析】
画出树状图计算即可;
【详解】
根据题意画树状图得:
,,,
共有9种等可能的结果,期中两人同坐一辆车的结果数为3,
∴两人同坐一辆车的概率为;
故答案是:.
【点睛】
本题主要考查了画树状图求概率,准确计算是解题的关键.
2、12
【分析】
根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.
【详解】
解:由题意知摸到黄色球的频率稳定在40%,
所以摸到白色球的概率:1-40%=60%,
因为不透明的布袋中,有黄色、白色的玻璃球共有20个,
所以布袋中白色球的个数为20×60%=12(个),
故答案为:12.
【点睛】
本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键.
3、0.880
【分析】
大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.
【详解】
解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,
从上表可以看出,频率成活的频率,即稳定于0.880左右,
∴估计这种幼树移植成活率的概率约为0.88.
故答案为:0.880.
【点睛】
此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.
4、
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图如下所示:
由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,
∴P两次抽出的卡片上所标数字之和为正数,
故答案为:.
【点睛】
本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.
5、
【分析】
根据题意,列表分析所有可能,然后运用概率公式求解即可.
【详解】
解:列表如下,表示红球,表示蓝球
第一次\第二次 | ||
总共4种情况,两次摸出的球颜色不同的2种.
所以两次摸出的球颜色不同的概率是
故答案是:.
【点睛】
本题考查了列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.
三、解答题
1、(1);(2)
【分析】
(1)根据概率公式即可求解;
(2)由题画出树状图,用小红和小雨被分到同一组的结果数比总的结果数即可得出答案.
【详解】
(1)∵小雨可分配到A、B、C三个项目组,
∴小雨被分配到C“五公里”项目组的概率为,
故答案为:;
(2)画出树状图如下所示:
∴小红和小雨被分到同一组的有3种结果,总的有9种,
∴小红和小雨被分到同一组的概率为.
【点睛】
本题考查用列表格或树状图求概率,掌握树状图的画法和概率的求法是解题的关键.
2、(1)不可能;(2)P(两个盒子里邮票的面值恰好相等).
【分析】
(1)由三张邮票里面没有80分的邮票即可判断这是不可能事件;
(2)列树状图先得到所有的等可能性的结果数,然后找到两个盒子里邮票的面值恰好相等的结果数,再由概率公式求解即可.
【详解】
解:(1)∵三张邮票里面没有80分的邮票
∴“小明抽到面值为80分的邮票”是不可能事件,
故答案为:不可能;
(2)设A、B、C分别代表120分、150分、50分的邮票,
列树状图如下所示:
由树状图可知一共有9种等可能性的结果数,其中两个盒子里邮票的面值恰好相等的结果数有三种
∴P(两个盒子里邮票的面值恰好相等).
【点睛】
本题主要考查了事件发生的可能性,树状图法或列表法求解概率,熟练掌握相关知识是解题的关键.
3、,验证过程见解析
【分析】
首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案.
【详解】
活动1:
| 红球1 | 红球2 | 白球 |
红球1 |
| (红1,红2) | (红1,白) |
红球2 | (红2,红1) |
| (红2,白) |
白球 | (白,红1) | (白,红2) |
|
∵共有6种等可能的结果,摸到两个红球的有2种情况,
∴摸出的两个球都是红球的概率记为
活动2:
| 红球1 | 红球2 | 白球 |
红球1 | (红1,红1) | (红1,红2) | (红1,白) |
红球2 | (红2,红1) | (红2,红2) | (红2,白) |
白球 | (白,红1) | (白,红2) | (白,白) |
∵共有9种等可能的结果,摸到两个红球的有4种情况,
∴摸出的两个球都是红球的概率记为
∴
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.重点需要注意球放回与不放回的区别.
4、(1);(2).
【分析】
(1)直接根据概率公式求解即可;
(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解.
【详解】
解:(1)由题意,
∵推出A,B,C,D四种礼盒套餐,
∴甲从中随机选取A套餐的概率是;
故答案为:.
(2)根据题意,画树状图为:
共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,
∴甲、乙2人选取相同套餐的概率为:.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
5、
【分析】
先利用列举法求出所有4种可能的结果数,再分别根据三角形三边的关系找出符合条件的结果数,最后根据概率公式计算即可.
【详解】
解:有4种可能的结果数,它们是:2cm、4cm、5cm;2cm、3cm、5cm;3cm、4cm、5cm;2cm、3cm、4cm,
这三条线段能构成一个三角形的结果数为3,
所以这三条线段能构成一个三角形的概率=.
【点睛】
本题主要考查了三角形的三边关系以及概率公式,根据已知确定可能的结果数和符合条件的结果数是解答本题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后练习题,共20页。试卷主要包含了若a是从“,下列事件是随机事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共19页。试卷主要包含了有两个事件,事件,下列说法正确的是,书架上有本小说等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共20页。试卷主要包含了若a是从“,下列事件中是不可能事件的是等内容,欢迎下载使用。