|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年度沪科版九年级数学下册第26章概率初步重点解析试卷(精选含答案)
    立即下载
    加入资料篮
    2021-2022学年度沪科版九年级数学下册第26章概率初步重点解析试卷(精选含答案)01
    2021-2022学年度沪科版九年级数学下册第26章概率初步重点解析试卷(精选含答案)02
    2021-2022学年度沪科版九年级数学下册第26章概率初步重点解析试卷(精选含答案)03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习

    展开
    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共20页。试卷主要包含了若a是从“,下列事件中是不可能事件的是等内容,欢迎下载使用。

    沪科版九年级数学下册第26章概率初步重点解析

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列事件中,属于必然事件的是(   

    A.任意购买一张电影票,座位号是奇数

    B.抛一枚硬币,正面朝上

    C.五个人分成四组,这四组中有一组必有2人

    D.打开电视,正在播放动画片

    2、下列说法正确的是(    ).

    A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件

    B.“打开电视机,正在播放乒乓球比赛”是必然事件

    C.“面积相等的两个三角形全等”是不可能事件

    D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次

    3、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:

    抛掷次数m

    500

    1000

    1500

    2000

    2500

    3000

    4000

    5000

    “正面向上”的次数n

    265

    512

    793

    1034

    1306

    1558

    2083

    2598

    “正面向上”的频率

    0.530

    0.512

    0.529

    0.517

    0.522

    0.519

    0.521

    0.520

    下面有3个推断:

    ①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;

    ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;

    ③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是(  

    A.② B.①③ C.②③ D.①②③

    4、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为(   

    A. B. C. D.

    5、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是(   

    A.的值一定是

    B.的值一定不是

    C.m越大,的值越接近

    D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性

    6、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为(   

    A. B. C. D.

    7、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是(  )

    A.15 B.12 C.9 D.4

    8、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是(     

    A.1 B. C. D.

    9、下列事件中是不可能事件的是(  )

    A.铁杵成针 B.水滴石穿 C.水中捞月 D.百步穿杨

    10、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是(   

    A. B. C. D.1

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、从1、-1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_________.

    2、现有5张除数字外完全相同的卡片,上面分别写有,0,1,2这五个数,将卡片背面朝上洗匀,从中任意抽取两张,将卡片上的数字记为

    (1)用列表法或画树状图法列举的所有可能结果.

    (2)若将mn的值代入二次函数,求二次函数顶点在坐标轴上的概率.

    3、在发展现代化农业的形势下,现有AB两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:

    种子数量

    100

    300

    500

    1000

    3000

    A

    出芽率

    0.99

    0.94

    0.96

    0.98

    0.97

    B

    出芽率

    0.99

    0.95

    0.94

    0.97

    0.96

    下面有三个推断:

    ①当实验种子数量为100时,两种种子的出芽率均为0.99,所以AB两种新玉米种子出芽的概率一样;

    ②随着实验种子数量的增加,A种子出芽率在 0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;

    ③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是_____________

    4、从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为_____.

    5、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:

    移植的棵数n

    1000

    1500

    2500

    4000

    8000

    15000

    20000

    30000

    成活的棵数m

    865

    1356

    2220

    3500

    7056

    13170

    17580

    26430

    成活的频率

    0.865

    0.904

    0.888

    0.875

    0.882

    0.878

    0.879

    0.881

    估计该种幼树在此条件下移植成活的概率为_______.

    三、解答题(5小题,每小题10分,共计50分)

    1、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为

    (1)求袋中黄球的个数;

    (2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.

    2、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题.

    (1)填空:该排球社团一共有      名女同学,a     

    (2)把频数分布直方图补充完整.

    (3)随机抽取1名学生,估计这名学生身高高于160cm的概率.

    3、如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°.

    (1)让转盘自由转动一次,指针落在白色区域的概率是多少?

    (2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率.(注:当指针恰好指在分界线上时,无效重转)

    4、有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数,2;乙口袋中装有三个相同的球,它们分别写有数,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为;再从乙口袋中随机取出一个球,其上的数记为.若,小明胜;若,为平局;若,小刚胜.

    (1)若,用树状图或列表法分别求出小明、小刚获胜的概率;

    (2)当为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数的值.

    5、九年级十班的甲、乙两位同学练习百米赛跑;操场上从内道到外道,标有1,2,3,4四个跑道.他们抽签占跑道.

    (1)若甲抽到2道,则乙抽到3道的概率是______________;

    (2)请列表或画树状图求甲、乙在相邻跑道的概率.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    根据事件发生的可能性大小判断相应事件的类型即可.

    【详解】

    解:A、任意购买一张电影票,座位号是奇数是随机事件;

    B、抛一枚硬币,正面朝上是随机事件;

    C、五个人分成四组,这四组中有一组必有2人是必然事件;

    D、打开电视,正在播放动画片是随机事件;

    故选:C.

    【点睛】

    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    2、A

    【分析】

    根据必然事件、不可能事件、随机事件的概念可区别各类事件.

    【详解】

    解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;

    B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;

    C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;

    D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;

    故选:A.

    【点睛】

    本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    3、C

    【分析】

    根据概率公式和图表给出的数据对各项进行判断,即可得出答案.

    【详解】

    解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;

    ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;

    ③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;

    故选:C

    【点睛】

    本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.

    4、B

    【分析】

    直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.

    【详解】

    解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;

    故取得的小正方体恰有三个面被涂色.的概率为

    故选:B.

    【点睛】

    此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.

    5、D

    【分析】

    根据频率与概率的关系以及随机事件的定义判断即可

    【详解】

    投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;

    故选:D

    【点睛】

    本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.

    6、C

    【分析】

    根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.

    【详解】

    解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:

     

     

    (业,睡)

    (业,机)

    (业,读)

    (业,体)

    (睡,业)

     

    (睡,机)

    (睡,读)

    (睡,体)

    (机,业)

    (机,睡)

     

    (机,读)

    (机,体)

    (读,业)

    (读,睡)

    (读,机)

     

    (读,体)

    (体,业)

    (体,睡)

    (体,机)

    (体,读)

     

    根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,

    ∴ 抽到“作业”和“手机”的概率为:

    故选:C.

    【点睛】

    题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.

    7、A

    【分析】

    由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n

    【详解】

    ∵摸到红球的频率稳定在20%,

    ∴摸到红球的概率为20%,

    a个小球中红球只有3个,

    ∴摸到红球的频率为.解得

    故选A.

    【点睛】

    此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.

    8、B

    【分析】

    根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.

    【详解】

    解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,

    a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,

    关于x的方程为一元二次方程的概率是

    故选择B.

    【点睛】

    本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.

    9、C

    【分析】

    根据随机事件,必然事件和不可能事件的定义,逐项即可判断.

    【详解】

    A、铁杵成针,一定能达到,是必然事件,故选项不符合;

    B、水滴石穿, 一定能达到,是必然事件,故选项不符合;

    C、水中捞月,一定不能达到,是不可能事件,故选项符合;

    D、百步穿杨,不一定能达到,是随机事件,故选项不符合;

    故选:C

    【点睛】

    本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    10、C

    【分析】

    根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;

    【详解】

    根据已知图形可得,中心对称图形是

    共有3个,

    ∴抽到的图案是中心对称图形的概率是

    故选C.

    【点睛】

    本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.

    二、填空题

    1、

    【分析】

    根据题意列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.

    【详解】

    解:列表得:

     

    -1

    1

    0

    -1

    ---

    (1,-1)

    (0,-1)

    1

    (-1,1)

    ---

    (0,1)

    0

    (-1,0)

    (1,0)

    ---

    所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,

    所以该点在坐标轴上的概率.

    故答案为:

    【点睛】

    本题考查列表法与树状图法和点的坐标特征,注意掌握通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件AB的结果数目m,然后根据概率公式求出事件AB的概率.

    2、(1)见解析;(2)

    【分析】

    (1)画出树状图即可;

    (2)共有20种可能的结果,其中二次函数顶点在坐标轴上的结果有8种,再由概率公式求解即可.

    【详解】

    (1)画树状图得

    共有20种可能的结果;

    (2)从,0,1,2这五个数中任取两数mn,共有20种可能,

    其中二次函数顶点在坐标轴上(记为事件A)的有8种,

    所以

    【点睛】

    本题考查了用树状图法求概率以及二次函数的性质.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.

    3、②③

    【分析】

    大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.

    【详解】

    ①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故①推断不合理;

    ②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故②推断合理;

    ③在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,种子的出芽率可能会高于种子,故③正确,

    故答案为:②③

    【点睛】

    此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键.

    4、

    【分析】

    根据概率的求法,让是偶数的卡片数除以总卡片数即为所求的概率.

    【详解】

    解答:解:∵四张卡片上分别标有数字2,4,5,6,其中有2,4,6,共3张是偶数,

    ∴从中随机抽取一张,卡片上的数字是偶数的概率为

    故答案为:

    【点睛】

    点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA)=

    5、0.880

    【分析】

    大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.

    【详解】

    解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,

    从上表可以看出,频率成活的频率,即稳定于0.880左右,

    ∴估计这种幼树移植成活率的概率约为0.88.

    故答案为:0.880.

    【点睛】

    此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.

    三、解答题

    1、(1)袋中黄球的个数为1个;(2)

    【分析】

    (1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;

    (2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.;

    【详解】

    解:(1)设袋中黄球的个数为x个,

    根据题意得

    解得x=1,

    经检验,x=1是方程的根,

    所以袋中黄球的个数为1个;

    (2)画树状图为:

    共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,

    所以两次摸出的都是红球的概率

    【点睛】

    本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是解题的关键.

    2、(1)100,30;(2)见解析;(3)0.55

    【分析】

    (1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;

    (2)根据(1)中的结论补全统计图即可;

    (3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率

    【详解】

    解:(1)总人数为:

    组的人数为

    故答案为:

    (2)如图,

    (3)总人数为,身高高于160cm为

    随机抽取1名学生,估计这名学生身高高于160cm的概率为

    【点睛】

    本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键.

    3、(1);(2)见解析,

    【分析】

    (1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;

    (2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得.

    【详解】

    解:(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是

    (2)设白色扇形两块和黑色扇形的一块分别为1,2,3,

    画树状图得:

    由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,

    所以指针一次落在白色区域,另一次落在黑色区域的概率为

    【点睛】

    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    4、(1)见详解;(2)m=-1

    【分析】

    (1)先画出树状图,再利用概率公式计算,即可求解;

    (2)取一个符合条件的m的值,即可.

    【详解】

    解:(1)画树状图如下:

    ∵一共有6种可能的结果,,有2种可能,,有3种可能,

    ∴小明获胜的概率=2÷6=,小刚获胜的概率=3÷6=

    (2)当m=-1时,画树状图如下:

    此时,小明和小刚获胜的概率相同.

    【点睛】

    本题主要考查等可能时间的概率,掌握画树状图是解题的关键.

    5、(1);(2)

    【分析】

    (1)因为甲已经抽到了2道,故乙只能在1、3、4三条跑道中抽取,乙抽到3道的概率P=

    (2)如图所示列表格,因为甲乙不能在同一条跑道,故共有12种可能,其中(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)为甲、乙跑道相邻的情况,故甲、乙在相邻跑道的概率为

    【详解】

    (1)∵甲已经抽到2号跑道

    ∴乙只能在1、3、4三条跑道中抽取

    ∴乙抽到3道的概率P=

    (2)如图所示列表格

    可知(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)时甲、乙在相邻跑道

    故甲、乙在相邻跑道的概率为

    【点睛】

    本题考查了事件概率的计算以及列表法求概率,当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法.列表法的一般步骤:(1)把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格(2)把所求事件发生的可能结果都找出来(3)代入计算公式:

     

    相关试卷

    初中数学沪科版九年级下册第26章 概率初步综合与测试课后练习题: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后练习题,共20页。试卷主要包含了若a是从“,下列事件是随机事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。

    初中沪科版第26章 概率初步综合与测试练习: 这是一份初中沪科版第26章 概率初步综合与测试练习,共19页。试卷主要包含了下列事件中,属于不可能事件的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第26章 概率初步综合与测试课后练习题: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后练习题,共19页。试卷主要包含了不透明的布袋内装有形状,下列说法正确的是,下列事件是必然发生的事件是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map