初中数学沪科版九年级下册第25章 投影与视图综合与测试同步训练题
展开
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共18页。试卷主要包含了如图所示的几何体的主视图为等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,该几何体的左视图是( )A. B. C. D.2、下列哪种光线形成的投影是平行投影( )A.太阳 B.探照灯 C.手电筒 D.路灯3、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )A. B. C. D.4、如图所示的几何体的主视图为( )A. B. C. D.5、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )A. B.C. D.6、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是( )A. B.C. D.7、如图,从正面看这个几何体得到的图形是( )A. B.C. D.8、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是( )A. B. C. D.9、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A.俯视图不变,左视图不变 B.主视图改变,左视图改变C.俯视图改变,主视图改变 D.主视图不变,左视图改变10、如图所示的礼品盒的主视图是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为_________厘米.2、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是______.3、三视图中的三个视图完全相同的几何体可能是________(列举出两种即可).4、如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是_____.5、如图,用小立方块搭一几何体,从正面看和从上面看得到的图形如图所示,这样的几何体至少要_____个立方块.三、解答题(5小题,每小题10分,共计50分)1、如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.2、下面是由一些棱长为a厘米的正方体小木块搭建成的几何体的主视图、左视图和俯视图.(1)该几何体是由 块小木块组成的;(2)求出该几何体的体积;(3)求出该几何体的表面积(包含底面).3、如图,是由一些大小相同的小正方体组合成的简单几何体,根据要求完成下列题目.(1)图中共有 个小正方体;(2)请在方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影).4、如图所示的几何体是由几个相同的小正方体排成3行组成的.(1)填空:这个几何体由 个小正方体组成;(2)画出该几何体的三个视图.(用阴影图形表示)5、如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有_______块小正方体;(2)该几何体从正面看所得到的平面图形如图所示,请你在下面方格纸中分别画出从左边看和从上边看它所得到的平面图形. -参考答案-一、单选题1、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.2、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.3、A【分析】从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.【详解】解:从左边看过去:可以看到上下两个宽度相同的长方形,所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,故选A【点睛】本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.4、A【分析】根据主视图是从物体的正面看得到的视图即可求解.【详解】解:主视图如下故选:A.【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提.5、C【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【详解】解:、主视图、俯视图都是正方形,故不符合题意;、主视图、俯视图都是矩形,故不符合题意;、主视图是三角形、俯视图是圆形,故符合题意;、主视图、俯视图都是圆,故不符合题意;故选:C.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握从正面看得到的图形是主视图,从上面看得到的图形是俯视图.6、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图.故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.7、A【分析】首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.【详解】解:观察图形从左到右小正方块的个数分别为1,2,1,故选A.【点睛】本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键.8、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断.【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意.B、当7个小正方体如图分布时,符合题意,本选项不符合题意.C、没有符合题意的几何图形,本选项符合题意.D、当7个小正方体如图分布时,符合题意,本选项不符合题意.故选:C.【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.9、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A.【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.10、B【分析】找出从几何体的正面看所得到的图形即可.【详解】解:从礼品盒的正面看,可得图形:故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.二、填空题1、【分析】由正视图可知,高是20cm,两顶点之间的最大距离为60cm,利用正六边形的性质求得底面AD,然后所有棱长相加即可.【详解】根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边,因为正六边形的直径为60cm,则AC=60÷2=30(cm),∠ACD=120°,作CB⊥AD于点B,那么AB=AC×sin60°=30×=15(cm),所以AD=2AB=30(cm),胶带的长至少=(cm).故答案为:.【点睛】本题考查了正六边形的性质、立体图形的三视图和学生的空间想象能力;注意知道正六边形两个顶点间的最大距离求对边之间的距离需构造直角三角形利用相应的三角函数求解.2、圆柱【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故答案为:圆柱.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3、正方体,球体【分析】几何体的三视图包括主视图、左视图、俯视图,根据定义选取三视图完全相同的几何体即可.【详解】解:正方体的主视图、左视图、俯视图都是正方形,且每个正方形大小相同;球体的主视图、左视图、俯视图,都是圆,且每个圆的大小相同.故答案为:正方体,球体【点睛】本题考查几何体的三视图,牢记主视图、左视图、俯视图的定义是做题的重点.4、【分析】根据三视图画出图形,并且得出每列和每行的个数,然后相加即可得出答案.【详解】解:根据三视图可画图如下:则组成这个几何体的小正方体的个数是:1+3+1+1+1+2=9;故答案为:9.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.5、12【分析】主视图是从正面看到的,俯视图是从上面看到的,据此求解即可.【详解】解:根据俯视图可得该几何体最下面一层有6个小立方块;从主视图可知最上面一层至少需要3个小立方块,中间一层至少需要3个小立方块,所以,这样的几何体最少需要3+3+6=12(个)小立方块;故答案为:12.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖”就更容易得到答案.三、解答题1、见解析【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.2、(1)10;(2)10a3 cm3;(3)40a2 cm2.【分析】(1)根据三视图的定义解决问题即可;(2)求出10个小正方体的体积和即可;(3)还原出立体图形,进而求出各个面的面积进行加总求和.【详解】解答:解:(1)几何体的小正方形的个数如俯视图所示,2=1+3+1+1+2=10.故答案为:10.(2)V=10a3(cm3)∴该几何体的体积为10a3cm3.(3)S=2(6a2+6a2+6a2)+2(a2+a2)=40a2(cm2).∴该几何体的表面积40a2cm2.【点睛】本题主要是考查了立体图形的三视图以及体积、表面积的求解,通过三视图还原得到原立体图形,需要一定的空间想象能力,另外表面积的求解,不要漏掉一些面.3、(1)9;(2)见解析.【分析】(1)直接根据几何体的形状,数出小正方体的个数即可;(2)直接利用左视图以及俯视图的观察角度分析得出答案即可.【详解】解:(1)由题意得:图中共有9个小正方体.故答案为:9.(2)如图所示,即为所求:【点睛】本题主要考查了画小立方体组成的几何体的三视图,判断小立方体的个数,解题的关键在于正确注意观察角度,主视图、俯视图、左视图分别是从物体的正面,上面、左面看得到的图形.4、(1)10;(2)见解析【分析】(1)数出小立方体的个数即可;(2)根据三视图的画法画出主视图、左视图、俯视图.【详解】解:(1)根据几何体,在俯视图中标出:个,故答案为:10;(2)三视图如图所示:【点睛】考查简单几何体的三视图的画法,解题的关键是掌握主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.画三视图时还要注意“长对正、宽相等、高平齐”.5、(1)11;(2)见解析.【分析】(1)根据几何体的图形进行判断即可得到答案;(2)根据几何体的左视图有2列,每一列的小正方形数目为2,2;俯视图有4列,每一列的小正方形的数目为2,2,1,1.【详解】(1)左边第一例,两层,前后两行,共4个正方体,左边第二列,两层,前后两行,共4个正方体,左边第三列两层,只有后行2个正方体,左边第四列,后行1个正方体,一共有4+4+2+1=11个,故答案为:11;(2)从左边看:分两行,每行各看到2个正方形, 从上面看:分为四列,前后两行,前行左边有2个正方形,后行4个正方形.【点睛】本题考查简单组合体的三视图,和立方体的个数,解此题的关键在于平时加强空间想象的能力.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试课时作业,共17页。试卷主要包含了下列事件中是不可能事件的是,下列说法正确的是等内容,欢迎下载使用。
这是一份2021学年第25章 投影与视图综合与测试练习,共19页。试卷主要包含了如图所示的礼品盒的主视图是,如图,身高1.5米的小明.,图中几何体的左视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试复习练习题,共19页。试卷主要包含了如图所示的几何体的主视图为,下列物体的左视图是圆的为等内容,欢迎下载使用。