沪科版九年级下册第25章 投影与视图综合与测试习题
展开
这是一份沪科版九年级下册第25章 投影与视图综合与测试习题,共18页。试卷主要包含了如图所示的支架,下列立体图形的主视图是,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.A.2 B.4 C.6 D.82、水平放置的下列几何体,主视图不是矩形的是( )A. B.C. D.3、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是( )A. B.C. D.4、全运会颁奖台如图所示,它的主视图是( )A. B. C. D.5、如图是一根空心方管,它的主视图是( )A. B. C. D.6、如图所示的支架(一种小零件)的两个台阶的高度相等,则它的左视图为( )A. B.C. D.7、已知一个几何体如图所示,则该几何体的左视图是( )A. B. C. D.8、下列立体图形的主视图是( )A. B. C. D.9、如图是下列哪个立体图形的主视图( )A. B.C. D.10、如图所示的几何体,其左视图是( ).A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留). 从正面看 从左面看 从上面看2、三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为________cm.3、如图是某几何体的三视图.已知主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,若矩形的长为3,宽为2,则这个几何体的体积为_________.4、三视图中的三个视图完全相同的几何体可能是________(列举出两种即可).5、下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图是由若干个完全相同的小正方体堆成的几何体.(1)图中有几个小正方体;(2)画出该几何体的三视图;2、补全如图的三视图. 3、如图,是由一些棱长为1cm的小正方体组成的简单几何体(1)请直接写出该几何体的表面积(含下底面)为 (2)从正面看到的平面图形如图所示,请在下面方格中分别画出从左向右、从上向下看到的平面图形4、一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称: ;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.5、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图. -参考答案-一、单选题1、B【分析】根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.【详解】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;∵∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,∴△EDC∽△FDC,∴,即DC2=ED•FD=2×8=16,解得CD=4m.故选:B.【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.2、C【分析】根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断【详解】解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形故C选项符合题题意,故选C【点睛】本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键.3、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图.故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4、C【分析】主视图是从前面先后看得到的图形,根据主视图对各选项一一分析即可.【详解】解:主视图是从前面先后看得到的图形,是C.故选C.【点睛】本题考查主视图,掌握三视图的特征是解题关键.5、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看,是内外两个正方形,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.6、C【分析】找到从左面看所得到的图形即可,注意所有的看到的棱用实线表示,看不见的棱用虚线表示.【详解】解:从左面看去,是两个有公共边的矩形,如图所示:故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7、B【分析】根据几何体左视图的概念求解即可.【详解】解:由左视图的概念可得,这个几何体的左视图为:.故选:B.【点睛】此题考查了几何体的左视图,解题的关键是熟练掌握几何体左视图的概念.左视图,一般指由物体左边向右做正投影得到的视图.8、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.9、B【分析】根据主视图即从物体正面观察所得的视图求解即可.【详解】解:的主视图为,故选:B.【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.10、B【分析】根据左视图的定义(一般指由物体左边向右做正投影得到的视图)求解即可.【详解】解:由左视图的定义可得:左视图为一个正方形,由于正方体内部有一个圆柱体,根据其方向可得左视图为:,故选:B.【点睛】题目主要考查三视图的作法,理解三视图的定义是解题关键.二、填空题1、【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积.故答案为:.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高.2、.【分析】过点E作EQ⊥FG于点Q,根据三视图可知AB的长即为EQ的长,根据勾股定理求解即可.【详解】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB.∵∠EFG=45°,∴EQ=FQ,∵EF=8cm,∴,∴EQ=FQ=(cm),即AB的长 cm.故答案为:4.【点睛】本题考查了三棱柱的三视图,得到AB的长即为EQ的长是解题的关键.3、【分析】根据三视图可知这个几何题为圆柱体,进而根据圆柱体的体积等于底面积乘以高即可求得【详解】主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,这个几何题为圆柱体,这个圆柱体体积为故答案为:【点睛】本题考查了根据三视图还原几何体,掌握基本几何体的三视图是解题的关键.4、正方体,球体【分析】几何体的三视图包括主视图、左视图、俯视图,根据定义选取三视图完全相同的几何体即可.【详解】解:正方体的主视图、左视图、俯视图都是正方形,且每个正方形大小相同;球体的主视图、左视图、俯视图,都是圆,且每个圆的大小相同.故答案为:正方体,球体【点睛】本题考查几何体的三视图,牢记主视图、左视图、俯视图的定义是做题的重点.5、③④①②【分析】根据从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.【详解】解:西为③,西北为④,东北为①,东为②,将它们按时间先后顺序排列为③④①②,故答案是:③④①②.【点睛】本题考查平行投影的特点和规律,解题的关键是掌握在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.三、解答题1、(1)10;(2)见解析【分析】(1)分别数出每层的小正方体的个数并相加即可;(2)按要求画出三视图即可.【详解】(1)1+3+6=10(个)即图中共有10个小正方体(2)所画的三视图如下:【点睛】本题主要考查了三视图、求几何体的小正方体的个数,要求较好的空间想象能力.2、见解析【分析】视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【详解】解:如图所示;【点睛】此题主要考查三视图的画法,注意实线和虚线在三视图的用法.3、(1)34 ;(2)见解析【分析】(1)先计算出每个小正方体一个面的面积,然后求出一共露在外面的面有多少个即可得到答案;(2)根据三视图的画法作图即可.【详解】解:(1)∵每个小正方体的棱长为,∴每个小正方体的一个面的面积为,∵从上面看露在外面的小正方体的面有6个,从底面看露在外面的面有6个,从正面看,露在外面的面有6个,从后面看,露在外面的面有6个,从左面看,露在外面的面有4个,从右面看,露在外面的面有4个,然后在最下层,第二行第二列的小正方体右边1个面露在外面,第二行第四列的小正方体左边一个面露在外面,∴露在外面的面一共有34个,∴该几个体的表面积为,故答案为:;(2)如图所示,即为所求;【点睛】本题主要考查了简单几何体的表面积和画三视图,解题的关键在于能够熟练掌握相关知识进行求解.4、(1)长方体或四棱柱(2)66cm2【分析】(1)这个立方体的三视图都是长方形所以这个几何体应该是长方体;(2)长方体一共有6个面,算长方体的表面积应该把这6个面的面积相加即可.(1)∵这个立方体的三视图都是长方形,∴这个立方体是长方体或四棱柱.(2)由三视图知该长方体的表面积:(3)(3×4)×4+(3×3)×2=66(cm2)【点睛】本题考查了由立体图形的三视图确定立体图形的形状;根据边长求表面积大小.解题的关键是要有空间想象能力.长方体有六个面,算表面积时不要遗漏.5、见解析.【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层,再画图即可.【详解】解:如图所示:【点睛】本题考查的是小正方体堆砌图形的三视图,掌握“三视图的含义”是画图的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共26页。
这是一份数学九年级下册第25章 投影与视图综合与测试综合训练题,共19页。试卷主要包含了如图,几何体的左视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共18页。试卷主要包含了如图所示的几何体的主视图为等内容,欢迎下载使用。