沪科版九年级下册第25章 投影与视图综合与测试课时练习
展开这是一份沪科版九年级下册第25章 投影与视图综合与测试课时练习,共19页。试卷主要包含了如图所示的几何体,它的左视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的几何体的主视图是( )
A. B. C. D.
2、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )
A. B.
C. D.
3、如图所示的几何体左视图是( )
A. B.
C. D.
4、如图是从不同方向看某个立体图形所得到的平面图形,则这个立体图形是( )
A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
5、如图所示,两个几何体各由4个相同的小正方体搭成,比较两个几何体的三视图,可以得到的正确结论是( )
A.主视图不同
B.左视图不同
C.俯视图不同
D.主视图、左视图和俯视图都不相同
6、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
7、如图是由4个相同的正方体组成的立体图形,它的左视图是( )
A. B. C. D.
8、如图所示的几何体,它的左视图是( )
A. B. C. D.
9、如图,将一个装了一半水的密闭圆柱形玻璃杯水平放置时,水面的形状是( )
A.圆 B.梯形 C.长方形 D.椭圆
10、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号.
—————— ——————
—————— ——————
2、如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则搭成的几何体小立方体的个数最大是________.
3、三视图中的三个视图完全相同的几何体可能是________(列举出两种即可).
4、一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为12,则a的值___.
5、一个“粮仓”的三视图如图所示(单位:),则它的侧面积是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是由小立方块塔成的几何体,请画出这个几何体从正面、左面、上面三个方面看到的形状图:
2、如图,由10个同样大小的小正方体搭成的几何体.
(1)请在网格中分别画出几何体的主视图和俯视图;(画图用2B铅笔加黑加粗)
(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多还可以再添加 个小正方体.
3、如图是由5个同样大小的小正方体搭成的几何体,请在下面方格纸中分别画出这个几何体从正面看、从左面看、从上面看的形状图.
4、一个几何体模具由大小相同边长为2分米的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置上的小立方块的个数.
(1)若工人师傅手里还有一些相同的正方体,如果要保持从上面和从左面看到的形状不变,最多可以添加______个正方体;
(2)请画出从正面和从左面看到的这个几何体模具的形状图;
(3)为了模具更为美观,工人师傅将对模具的表面进行喷漆,请问工人师傅需要喷漆多少平方分米?
5、如图是某几何体从正面、左面、上面看到的形状图.
(1)这个几何体的名称是________.
(2)若从正面看到的长方形的宽为4cm,长为9cm,从左面看到的宽为3cm,从上面看到的直角三角形的斜边为5cm,这个几何体中所有棱长的和是多少?它的侧面积是多少?
-参考答案-
一、单选题
1、B
【分析】
根据主视图即从物体的正面观察进而得出答案.
【详解】
解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,
故选:
【点睛】
本题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.
2、D
【分析】
左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.
【详解】
解:该几何体从左面看到的形状图有2列,
第1列看到1个正方形,第2列看到2个正方形,
所以左视图是D,
故选D
【点睛】
本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.
3、C
【分析】
找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.
【详解】
解:从几何体的左面看,是一列两个矩形,矩形的中间用虚线隔开.
故选C.
【点睛】
此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.
4、A
【分析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
【详解】
解:由主视图和左视图为长方形判断出是柱体,由俯视图是三角形可判断出这个几何体应该是三棱柱.
故选:A.
【点睛】
本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为三角形就是三棱柱.
5、C
【分析】
根据几何体的三视图特征进行判断即可.
【详解】
解:观察两个几何体的三视图,
则知:主视图相同,左视图相同,俯视图不同,
故选项A、B、D错误,选项C正确,
故选:C.
【点睛】
本题考查几何体的三视图,理解三视图的意义是解答的关键.
6、B
【分析】
根据左视图是从左面看得到的图形,可得答案.
【详解】
解:从左边看,上面一层是一个正方形,下面一层是两个正方形,
故选B
【点睛】
本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.
7、A
【分析】
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.
【详解】
从左面看所得到的图形为A选项中的图形.
故选A
【点睛】
本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
8、C
【分析】
根据几何体的左面是一个圆环即可得左视图.
【详解】
由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线.
故选:C.
【点睛】
本题考查了三视图,根据所给几何体正确画出三视图是关键.
9、C
【分析】
根据水平面与圆柱的底面垂直,可得从上面看,水面的形状为长方形,即可求解.
【详解】
解:∵水平面与圆柱的底面垂直,
∴从上面看,水面的形状为长方形.
故选:C
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从前面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
10、C
【分析】
左视图是从左边看得到的视图,结合选项即可得出答案.
【详解】
解:A是俯视图,B、D不是该几何体的三视图,C是左视图.
故选:C.
【点睛】
本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
二、填空题
1、③①④②
【分析】
在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可.
【详解】
根据三视图的定义可知:第一个三视图所对应的几何体为③;
第二个三视图所对应的几何体为①;
第三个三视图对应的几何体为④;
第四个三视图对应的几何体为②;
故答案为:③①④②.
【点睛】
本题考查三视图,熟知三视图的定义是解题的关键.
2、7
【分析】
根据俯视图和左视图确定每层的立方体的个数,即可求解.
【详解】
解:由俯视图易得最底层有4个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,
那么小立方体的个数可能是5个或6个或7个.
故答案为:7
【点睛】
此题考查了几何体的三视图,解题的关键是根据几何体的三视图确定各层的立方体的个数.
3、正方体,球体
【分析】
几何体的三视图包括主视图、左视图、俯视图,根据定义选取三视图完全相同的几何体即可.
【详解】
解:正方体的主视图、左视图、俯视图都是正方形,且每个正方形大小相同;球体的主视图、左视图、俯视图,都是圆,且每个圆的大小相同.
故答案为:正方体,球体
【点睛】
本题考查几何体的三视图,牢记主视图、左视图、俯视图的定义是做题的重点.
4、
【分析】
观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,根据勾股定理可得底面边长为a,根据长方形的面积公式和这个正三棱柱的侧面积为12,可得关于a的方程,解方程即可求得a的值.
【详解】
解:观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,则底面边长为a,
依题意有a×2×3=12,
解得a=.
故答案为:.
【点睛】
此题考查了由三视图判断几何体,关键是由三视图得到正三棱柱的高和底面边长.
5、
【分析】
根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算侧面积即可.
【详解】
解:由三视图可知,这个几何体上部分是一个圆锥,下部分是一个圆柱,
由图中数据可知,圆锥的高为7-4=3m,圆锥的底面圆的直径为6m,圆柱的高为4m,底面圆直径为6m,
∴圆锥的母线长m ,
∴圆柱部分的侧面积,圆锥的侧面积,
∴这个几何体的侧面积,
故答案为:.
【点睛】
本题主要考查了简单组合体的三视图,圆锥和圆柱的侧面积计算,解题的关键在于能够根据几何体的三视图确定几何体为圆锥和圆柱的结合体.
三、解答题
1、见解析
【分析】
根据简单几何体的三视图画法画出图形即可.
【详解】
解:三视图如下所示:
【点睛】
本题主要考查了几何体的三视图,解题的关键在于能够熟练掌握画三视图的方法.
2、(1)见解析;(2)3
【分析】
(1)根据题意由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;
(2)由题意可知要保持主视图和俯视图不变,可往第1列前面的2个几何体上各放2个和1个小正方体,即可得出答案.
【详解】
解:(1)如图所示:
;
(2)保持这个几何体的主视图和俯视图不变,那么最多还可以再添加3个小正方体.
故答案为:3.
【点睛】
本题考查简单组合体的三视图的画法.要掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.
3、见解析
【分析】
根据图形及三视图的定义作图即可.
【详解】
解:三视图如下所示:
【点睛】
此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.
4、(1)5;(2)见解析;(3)工人师傅需要喷漆232平方分米
【分析】
(1)根据从上面和从左面看到的形状保持不变,可对每个位置增加正方体即可;
(2)根据每行和每列正方体的个数即可画出从正面和从左面看到的这个几何体模具的形状图;
(3)求出模具的表面积即可.
【详解】
(1)由题可知,可在第二行第一列增加1个正方体,第二行第二列增加3个正方体,第三行第二列增加1个正方体,
所以最多可以添加5个正方体
(2)画出从正面和从左面看到的形状图如下:
(3)工人师傅需要喷漆面积如下:
(平方分米)
答:工人师傅需要喷漆232平方分米.
【点睛】
本题考查三视图的画法以及表面积的求法,掌握从不同方向看物体的形状是解题的关键.
5、(1)直三棱柱;(2)所有棱长的和是51cm,它的侧面积为108cm2
【分析】
(1)直接利用三视图可得出几何体的形状;
(2)利用已知各棱长分别得出棱长和与侧面积.
【详解】
(1)这个几何体是直三棱柱;
故答案为:直三棱柱
(2)由题意可得:
它的所有棱长之和为:
(3+4+5)×2+9×3=51(cm);
它的侧面积为:
(3+4+5)×9=108(cm2)
答:所有棱长的和是51cm,它的侧面积为108cm2.
【点睛】
此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题,共20页。试卷主要包含了如图所示的几何体,它的左视图是,如图所示的几何体的左视图是,如图,该几何体的主视图是,下列立体图形的主视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试习题,共21页。试卷主要包含了如图所示几何体的左视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试课后练习题,共23页。试卷主要包含了如图,该几何体的俯视图是,如图所示的几何体的左视图是等内容,欢迎下载使用。