【真题汇总卷】2022年中考数学模拟专项测评 A卷(含答案及解析)
展开2022年中考数学模拟专项测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )
A.11.5×108 B.1.15×108 C.11.5×109 D.1.15×109
2、下列命题正确的是
A.零的倒数是零
B.乘积是1的两数互为倒数
C.如果一个数是,那么它的倒数是
D.任何不等于0的数的倒数都大于零
3、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )
A.5 B.8 C.11 D.9
4、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )
A. B. C. D.
5、下列计算错误的是( )
A. B. C. D.
6、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )
A.60° B.120° C.135° D.150°
7、下列说法中,不正确的是( )
A.是多项式 B.的项是,,1
C.多项式的次数是4 D.的一次项系数是-4
8、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )
A. B.2 C.3 D.4
9、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
10、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A. B. C. D.1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,AB=12,BC=15,D为BC上一点,且BD=BC,在AB边上取一点E,使以B,D,E为顶点的三角形与△ABC相似,则BE=_____.
2、将去括号后,方程转化为_______.
3、如图,将一副直角三角板叠放在一起,使直角顶点重合于点,若∠COB=50°,则∠AOD=_______
4、若∠α=55°25’,则∠α的补角为_______.
5、已知射线,在射线上截取OC=10cm,在射线上截取CD=6cm,如果点、点分别是线段、的中点,那么线段的长等于_______cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知在△ABC中,AB=AC,∠BAC=80°,AD⊥BC,AD=AB,联结BD并延长,交AC的延长线干点E,求∠ADE的度数.
2、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,F为AB延长线上一点,连接CF,DF.
(1)若OE=3,BE=2,求CD的长;
(2)若CF与⊙O相切,求证DF与⊙O相切.
3、一个正整数k去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与7的商是一个整数,则称正整数k为“尚志数”,把这个商叫做k的尚志系数,记这个商为F(k).如:732去掉个位数字是73.2的2倍与73的和是77,77÷7=11,11是整数,所以732是“尚志数”,732的尚志系数是11,记F(732)=11:
(1)计算:F(204)= ;F(2011)= ;
(2)若m、n都是“尚志数”,其中m=3030+10la,n=400+10b+c(0≤a≤9,0≤b≤9,0≤c≤9,a,b,c是整数),规定:G(m,n)=,当F(m)+F(n)=66时,求G(m,n)的值.
4、如图,在△ABC中,已知D是BC边的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,交AC的延长线于点E,联结EG.
(1)说明BG与CF相等的理由.
(2)说明∠BGD与∠DGE相等的理由.
5、如图所示,,,,D在CE上,直线AE与线段BD交于点G(不与B、D重合)
(1)当时
①如图1,求的度数;
②如图2,若的角平分线交AD于F,求证:CF平分;
(2)如图3,过点A作BC的垂线,变BC,ED于点M、N,求EN和ED的数量关系.
-参考答案-
一、单选题
1、D
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:11.5亿=1150000000=1.5×109.
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、B
【分析】
根据倒数的概念、有理数的大小比较法则判断.
【详解】
解:、零没有倒数,本选项说法错误;
、乘积是1的两数互为倒数,本选项说法正确;
、如果,则没有倒数,本选项说法错误;
、的倒数是,,则任何不等于0的数的倒数都大于零说法错误;
故选:.
【点睛】
本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键.
3、C
【分析】
分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.
【详解】
解:解不等式x-a≥1,得:x≥a+1,
解不等式x+5≤b,得:x≤b-5,
∵不等式组的解集为3≤x≤4,
∴a+1=3,b-5=4,
∴a=2,b=9,
则a+b=2+9=11,
故选:C.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
4、D
【分析】
设这个物品的价格是x元,根据人数不变列方程即可.
【详解】
解:设这个物品的价格是x元,由题意得
,
故选D.
【点睛】
本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.
5、A
【分析】
直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可.
【详解】
解:A.,故此选项计算错误,符合题意;
B.,故此选项计算正确,不合题意;
C.,故此选项计算正确,不合题意;
D.,故此选项计算正确,不合题意;
故选:A.
【点睛】
此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.
6、B
【分析】
观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.
【详解】
∠α=
故选:B.
【点睛】
本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.
7、C
【分析】
根据多项式的定义及项数、次数定义依次判断.
【详解】
解:A. 是多项式,故该项不符合题意;
B. 的项是,,1,故该项不符合题意;
C. 多项式的次数是5,故该项符合题意;
D. 的一次项系数是-4,故该项不符合题意;
故选:C.
【点睛】
此题考查了多项式的定义及项数的定义、次数的定义,正确掌握多项式的各定义是解题的关键.
8、B
【分析】
由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.
【详解】
解:沿折叠,使点落在点处,
,,
又∵,
∴,
∴,
,
又为的中点,AE=AE'
∴,
,
即,
.
故选:B.
【点睛】
本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.
9、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
10、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
二、填空题
1、4或
【分析】
以B,D,E为顶点的三角形与△ABC相似,则存在两种情况,即△BDE∽△BCA,也可能是△BDE∽△BAC,应分类讨论,求解.
【详解】
解:如图,DE//BC
①当∠AED=∠C时,即DE∥AC
则△BDE∽△BCA,
∴
∵BD=BC,
∴
∴
②当∠BED=∠C时,△BED∽△BCA
∴,即
∴
综上,BE=4或
故答案为4或
【点睛】
此题考查了相似三角形的性质,会利用相似三角形求解一些简单的计算问题.
2、
【分析】
根据去括号法则解答即可.
【详解】
解:原方程去括号,得:.
故答案为:.
【点睛】
本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键.去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号.
3、130°130度
【分析】
先计算出,再根据可求出结论.
【详解】
解:∵,
∴
∵
∴
故答案为:130°
【点睛】
本题考查了角的计算及余角的计算,熟悉图形是解题的关键.
4、
【分析】
根据补角的定义计算.
【详解】
解:∠α的补角为,
故答案为:.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
5、2
【分析】
根据OC、CD和中点A、B求出AC和BC,利用AB=AC-BC即可.
【详解】
解:如图所示,
,,
点、点分别是线段、的中点,
,,
.
故答案为:2.
【点睛】
本题考查线段的和差计算,以及线段的中点,能准确画出对应的图形是解题的关键.
三、解答题
1、110°
【分析】
根据等腰三角形三线合一的性质可求∠BAD=∠CAD=∠BAC=40°,根据等腰三角形的性质可求∠BDA,再根据三角形内角和定理即可求解.
【详解】
解:∵AB=AC,∠BAC=80°,AD⊥BC,
∴∠BAD=∠CAD=∠BAC=40°,
∵AD=AB,
∴∠BDA=×(180°﹣40°)=70°,
∴∠ADE=180°﹣∠BDA=180°﹣70°=110°.
【点睛】
本题考查的是三角形的外角的性质,等腰三角形的性质,掌握“等边对等角,等腰三角形的三线合一”是解本题的关键.
2、(1)8;(2)见解析
【分析】
(1)连接OC,利用勾股定理求解CE=4,再利用垂径定理可得答案;
(2)证明 再证明 可得 从而可得结论.
【详解】
(1)解:连接OC,
∵CD⊥AB,
∴CE=DE,
∴OC=OB=OE+BE=3+2=5,
在Rt△OCE中,∠OEC=90°,由勾股定理得:CE2=OC2-OE2,
∴CE2=52-32,
∴CE=4,
∴CD=2CE=8.
(2)解:连接OD,
∵CF与⊙O相切,
∴∠OCF=90°,
∵CE=DE,CD⊥AB,
∴CF=DF,
又OF=OF,OC=OD,
∴△OCF≌△ODF,
∴∠ODF=∠OCF=90°,即OD⊥DF.
又D在⊙O上,
∴DF与⊙O相切.
【点睛】
本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明△OCF≌△ODF得到∠ODF=∠OCF=90°是解本题的关键.
3、
(1)4;29
(2)或0或
【分析】
(1)利用“尚志数”的定义即可求得结论;
(2)利用m=3030+101a是“尚志数”,根据0≤a≤9,a为整数可求得a=1或8,进而求得F(m)的值,利用F(m)+F(n)=66,可得F(n),再利用“尚志数”的定义得出关于b,c的式子,利用0≤b≤9,0≤c≤9,b,c是整数可求得b,c的值,利用公式G(m,n)=,可求结论.
【小题1】
解:∵20+4×2=28,28÷7=4,
∴F(204)=4.
∵201+1×2=203,203÷7=29,
∴F(2011)=29.
故答案为:4;29;
【小题2】
∵m=3030+101a=3000+100a+30+a,
∴F(m)=,
由题干中的定义可知为整数,且0≤a≤9,
∵a=1时,=2,a=8时,=14,
∴a=1或a=8.
①当a=1时,F(m)=43+2=45,
∵F(m)+F(n)=66,
∴F(n)=21.
∵F(n)=,
∴=21.
∴b+2c=107.
∵0≤b≤9,0≤c≤9,
∴不存在b,c满足b+2c=107.
②当a=8时,F(m)=43+14=57,
∵F(m)+F(n)=66,
∴F(n)=9.
∵F(n)=,
∴=9.
∴b+2c=23.
∵0≤b≤9,0≤c≤9,
∴或或,
∴当a=8,b=5,c=9时,G(m,n)=;
当a=8,b=7,c=8时,G(m,n)=;
当a=8,b=9,c=7时,G(m,n)=.
【点睛】
本题主要考查了因式分解的应用,本题是阅读型题目,准确理解题干中的定义并熟练应用是解题的关键.
4、
(1)见祥解
(2)见祥解
【分析】
(1)求出BD=DC,∠GBD=∠DCF,证出△BDG≌△CDF即可;
(2)根据线段垂直平分线性质得出EF=EG,求出∠DFE=∠DGE,∠DFE=∠BGD,即可得出答案.
(1)
解 ∵D为BC中点,
∴BD=DC(中点的定义),
∵BG∥FC(已知),
∴∠GBD=∠DCF(两直线平行,内错角相等),
在△BDG和△CDF中,
,
∴△BDG≌△CDF(ASA),
∴BG=CF(全等三角形对应边相等);
(2)
解:∵D是BC边的中点,DE⊥GF,即DE为线段GF的中垂线,
∴EF=EG,
∴∠DFE=∠DGE(等边对等角),)
∵∠DFE=∠BGD(全等三角形对应角相等),
∴∠BGD=∠DGE(等量代换).
【点睛】
本题考查全等三角形的判定与性质,线段垂直平分线的性质.解答本题的关键是明确题意,找出所求问题需要的条件,证明三角形全等.
5、
(1)①;②证明见详解;
(2),证明见详解.
【分析】
(1)①根据等腰直角三角形的性质可得,再由垂直的性质及直角三角形中两锐角互余即可得;
②由①可知:,,再根据等腰三角形的性质可得AD为CE的中垂线,由角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得,利用等量代换得,由此即可证明;
(2)过点D作交AN的延长线于点F,AN和BC相交于点H,根据各角之间的数量关系可得,由平行线的性质及各角之间的等量代换得出,,
根据全等三角形的判定定理和性质可得,,再利用一次全等三角形的判定和性质可得,,由此即可得出结论.
(1)
解:①∵,,
∴,
∵,
∴,
∴;
②证明:如图所示:
由①可知:
,
∴,
∴,,
∵,
∴,,
∴AD为CE的中垂线,
∴,
∴,
∵EF平分,
∴,
∴,
∴CF平分;
(2)
解:过点D作交AN的延长线于点F,AN和BC相交于点H,
∵,
∴,,
∴,
即,
∵,
∴,
∴,
∵,
∴,
在与中,
,
∴,
∴,
∵,
∴,
∵,
∴,
在与中,
,
∴,
∴,
∴.
【点睛】
题目主要考查等腰三角形的判定和性质,中垂线的判定和性质,角平分线的定义,全等三角形的判定和性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
【真题汇总卷】2022年唐山迁安市中考数学模拟专项测评 A卷(含答案及解析): 这是一份【真题汇总卷】2022年唐山迁安市中考数学模拟专项测评 A卷(含答案及解析),共26页。试卷主要包含了下列各式,已知等腰三角形的两边长满足+等内容,欢迎下载使用。
【真题汇总卷】2022年唐山滦州市中考数学模拟专项测评 A卷(含答案及详解): 这是一份【真题汇总卷】2022年唐山滦州市中考数学模拟专项测评 A卷(含答案及详解),共32页。试卷主要包含了在解方程时,去分母正确的是,如果,那么的取值范围是等内容,欢迎下载使用。
【真题汇总卷】2022年中考数学模拟专项测评 A卷(含答案详解): 这是一份【真题汇总卷】2022年中考数学模拟专项测评 A卷(含答案详解),共33页。试卷主要包含了若,则下列不等式正确的是,若分式的值为0,则x的值是等内容,欢迎下载使用。