


【高频真题解析】2022年最新中考数学模拟考试 A卷(含详解)
展开
这是一份【高频真题解析】2022年最新中考数学模拟考试 A卷(含详解),共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
2022年最新中考数学模拟考试 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下四个选项表示某天四个城市的平均气温,其中平均气温最高的是( )A. B. C. D.2、在,,, ,中,负数的个数有( ).A.个 B.个 C.个 D.个3、如图①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是( )A.60 B.100 C.125 D.1504、如图,已知是的直径,过点的弦平行于半径,若的度数是,则的度数是( )A. B. C. D.5、无论a取什么值时,下列分式总有意义的是( )A. B. C. D.6、化简的结果是( )A.1 B. C. D.7、已知空气的单位体积质量为克/厘米3,将用小数表示为( )A. B. C. D.8、如图,反比例函数图象经过矩形边的中点,交边于点,连接、、,则的面积是( )A. B. C. D.9、用四舍五入法按要求对0.7831取近似值,其中正确的是( )A.0.783(精确到百分位) B.0.78(精确到0.01) C.0.7(精确到0.1) D.0.7830(精确到0.0001)10、石景山某中学初三班环保小组的同学,调查了本班名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个),,,,,,,,,.若一个塑料袋平铺后面积约为,利用上述数据估计如果将全班名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列4个分式:①;②;③ ;④,中最简分式有_____个.2、关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.3、实数a、b互为相反数,c、d互为倒数,x的绝对值为,则=_______.4、已知,则= .5、用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是_____.三、解答题(5小题,每小题10分,共计50分)1、某商家在“618购物节”活动中将某种服装按成本价加价40%作为标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,这件服装的实际售价是多少元?2、如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点B(3,1)、C(﹣2,6),与y轴交于点A,对称轴为直线x=1.(1)求抛物线的表达式;(2)求△ABM的面积;(3)点P是抛物线上一点,且∠PMB=∠ABM,试直接写出点P的坐标.3、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,﹣).(1)求二次函数的表达式;(2)连接AC,BC,判定△ABC的形状,并说明理由.4、对于点M,N,给出如下定义:在直线MN上,若存在点P,使得 ,则称点P是“点M到点N的k倍分点”.例如:如图,点Q1,Q2,Q3在同一条直线上, Q1Q2=3,Q2Q3=6,则点Q1是点Q2到点Q3的 倍分点,点Q1是点Q3到点 Q2的3倍分点. 已知:在数轴上,点A,B,C分别表示-4,-2,2.(1)点B是点A到点C的______倍分点,点C是点B到点A的______倍分点;(2)点B到点C的3倍分点表示的数是______;(3)点D表示的数是x,线段BC上存在点A到点D的2倍分点,写出x的取值范围.5、一个三位数m,将m的百位数字和十位数字相加,所得数的个位数字放在m之后,得到的四位数称为m的“如虎添翼数”.将m的“如虎添翼数”的任意一个数位上的数字去掉后可以得到四个新的三位数,把四个新的三位数的和与3的商记为.例如:,∵,∴297的如虎添翼数n是2971,将2971的任意一个数位上的数字去掉后可以得到四个新的三位数:971、271、291、297,则.(1)258的如虎添翼数是____________,___________.(2)证明任意一个十位数字为0的三位数M,它的“如虎添翼数”与M的个位数字之和能被11整除.(3)一个三位数(且),它的“如虎添翼数”t能被17整除,求的最大值. -参考答案-一、单选题1、D【分析】根据负数比较大小的概念逐一比较即可.【详解】解析:.故选:【点睛】本题主要考查了正负数的意义,熟悉掌握负数的大小比较是解题的关键.2、A【分析】根据负数的定义:小于0的数是负数作答.【详解】解:五个数,,, ,,化简为,,, ,+2.所以有2个负数.故选:A.【点睛】本题考查负数的概念,判断一个数是正数还是负数,要把它化为最简形式再判断.概念:大于0的数是正数,小于0的是负数.3、B【分析】分析图形变化过程中的等量关系,求出变化后的长方形Ⅱ部分的长和宽即可.【详解】解:如图:∵拼成的长方形的长为(a+b),宽为(a-b),∴,解得a=25,b=5,∴长方形Ⅱ的面积=b(a-b)=5×(25-5)=100.故选B.【点睛】本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系.4、A【分析】根据平行线的性质和圆周角定理计算即可;【详解】∵,,∴,∵,∴.故选A.【点睛】本题主要考查了圆周角定理、平行线的性质,准确计算是解题的关键.5、D【分析】根据分式有意义的条件是分母不等于零进行分析即可.【详解】解:A、当a=0时,分式无意义,故此选项错误;B、当a=−1时,分式无意义,故此选项错误;C、当a=−1时,分式无意义,故此选项错误;D、无论a为何值,分式都有意义,故此选项正确;故选D.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.6、D【分析】括号里通分化简,然后根据除以一个数等于乘以这个数的倒数计算即可.【详解】解:原式,故选:D.【点睛】本题考查了分式的混合运算,熟知运算法则是解题的关键.7、B【分析】指数是-3,说明数字1前面有3个0【详解】指数是-3,说明数字1前面有3个0,故选B【点睛】在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)8、B【分析】连接OB.首先根据反比例函数的比例系数k的几何意义,得出S△AOE=S△COF=1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则S△BEF=S△OCF=0.75,最后由S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF,得出结果.【详解】连接OB.∵E、F是反比例函数y=﹣(x>0)图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=1.5.∵矩形OABC边AB的中点是E,∴S△BOE=S△AOE=1.5,S△BOC=S△AOB=3,∴S△BOF=S△BOC﹣S△COF=3﹣1.5=1.5,∴F是BC的中点,∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣1.5﹣1.5﹣0.5×1.5=.故选B.【点睛】本题主要考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.得出点F为BC的中点是解决本题的关键.9、B【分析】精确到某一位,即对下一位的数字进行四舍五入;0.783(精确到千分位),0.7831(精确到0.1)是0.8.【详解】A. 0.783(精确到千分位), 所以A选项错误;B、0.78(精确到0.01),所以B选项正确;C、0.8(精确到0.1),所以C选项错误;D、0.7831(精确到0.0001),所以D选项错误;故选:B【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.10、D【分析】先求出每一名学生自己家中一周内丢弃的塑料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平铺后面积.那么全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开所占面积即可求出.【详解】由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为=10个,则每名同学丢弃的塑料袋平铺后面积约为10×0.25m2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为40×2.5=100m2.故选D.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.二、填空题1、①④【分析】根据最简分式的定义逐式分析即可.【详解】①是最简分式;②=,不是最简分式 ;③=,不是最简分式;④是最简分式.故答案为2.【点睛】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.2、m=4.【详解】分析:若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.故答案为m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.3、6±【详解】解:∵a、b互为相反数,c、d互为倒数,x的绝对值为,∴a+b=0,cd=1,x=±,当x=时,原式=5+(0+1)×+0+1=6+;当x=−时,原式=5+(0+1)×(−)+0+1=6−.故答案为6±.4、.【解析】试题解析:设,则x=2k,y=3k,z=4k,则=.考点:分式的基本性质.5、2【详解】解:扇形的弧长==2πr,∴圆锥的底面半径为r=2.故答案为2.三、解答题1、140元.【分析】设衣服的成本价为x元,根据售价−成本价=利润列出方程求解即可.【详解】解:设这件服装的成本价为x元,根据题意列方程得:x(1+40%)×80%−x=15,解得x=125,经检验x=125是方程的解,∴实际售价为:125×(1+40%)×80%=140(元),答:这件服装的实际售价是140元.【点睛】本题主要考查一元一次方程的知识,根据售价−成本价=利润列出方程是解题的关键.2、(1)y=x2-2x-2(2)3(3)(8,46)或(2,-2)【分析】(1)由题意设抛物线解析式为y=ax2+bx+c,依题意得出三元一次方程组,解方程得出a、b、c的值,即可求出抛物线的解析式;(2)根据题意连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,求出直线AB的解析式,求出点Q的坐标,得出MQ的长,再利用S△ABM=S△MQA+S△MQB,即可求出△ABM的面积;(3)根据题意分PM在AB的左侧和右侧两种情况进行讨论,即可得出点P的坐标.(1)解:(1)设抛物线解析式为y=ax2+bx+c,∵抛物线经过点B(3,1)、C(-2,6),对称轴为直线x=1,∴,解得:,∴设抛物线解析式为:y=x2-2x-2.(2)如图1,连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,当x=0时,y=-2,当x=1时,y=-3,∴A(0,-2),M(1,-3),设直线AB的解析式为y=mx+n,把A(0,-2),B(3,1)代入得:,解得:,∴y=x-2,当x=1时,y=-1,∴Q(1,-1),∴MQ=-1-(-3)=2,∴S△ABM=S△MQA+S△MQB=•MQ•|xB-xA|=×2×|3-0|=3.(3)如图2,分两种情况分类讨论:①当PM在AB的左侧时,PM交AB于点D,设D(t,t-2),∵B(3,1)、M(1,-3),∴,∵∠PMB=∠ABM,∴BD=MD,∴,解得:t=,∴D(,),设直线MD的解析式为y=kx+b,∴,解得:,∴直线MD的解析式为y=7x-10,∴,解得: (舍去),,∴P(8,46),②当PM在AB的右侧时,PM交抛物线于点P,∵∠PMB=∠ABM,∴AB∥PM,∴设直线MP的解析式为y=x+d,把M(1,-3)代入得:-3=1+d,∴d=-4,∴直线MP的解析式为y=x-4,∴,解得: (舍去),,∴P(2,-2),综上所述,点P的坐标为(8,46)或(2,-2).【点睛】本题考查二次函数综合题,熟练掌握并利用待定系数法和分类讨论的思想进行分析是解决问题的关键.3、(1);(2)直角三角形,理由见解析.【分析】(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;(2)令,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断的形状.(1)解:将点C代入函数解析式得:,解得:,故该二次函数表达式为:.(2)解:令,得:,解得:,.∴A点坐标为(-1,0),B点坐标为(3,0).∴OA=1,OC=,,∴,. ∵,即,∴的形状为直角三角形.【点睛】本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C的坐标求出函数解析式是解答本题的关键.4、(1);(2)1或4(3)-3≤x≤5【分析】(1)根据“倍分点”的定义进行判断即可;(2)根据“倍分点”的定义进行解答;(3)根据“倍分点”的定义,分两种情况列出关于x的一元一次方程,解得x的值即可;(1)解:由题意得,AB=2,BC=4,AC=6∴AB=BC,BC=AC∴点B是点A到点C的倍分点,点C是点B到点A的倍分点;故答案为:;(2)解:设3倍分点为M,则BM=3CM,若M在B左侧,则BM<CM,不成立;若M在BC之间,则有BM+CM=BC=4,∵BM=3CM∴4CM=4,CM=1∴M点为1;若M在C点右侧,则有BC+CM=BM∵BM=3CM,BC=4∴CM=2所以M点为4综上所述,点B到点C的3倍分点表示的数是1或4;故答案为:1或4(3)解:当2倍分点为B时,x取得最小值,此时AB=2(-2-x)=2解得:x=-3当2倍分点为C点且D点在C点右侧时,x取得最大值此时AC=2(x-2)=6解得x=5所以-3≤x≤5;【点睛】本题主要考查两点间的距离,一元一次方程的应用,注意分类讨论的思想是解题的关键.5、(1),(2)见解析(3)1002【分析】(1)根据定义分析即可求解;(2)根据定义写出,进而写出它的“如虎添翼数”与M的各位数字之和,根据整式的加减运算得出,即可得证;(3)根据定义写出,根据确定的值,进而求解.(1)解:当,,的如虎添翼数n是,将的任意一个数位上的数字去掉后可以得到四个新的三位数:则(2)设,则,的如虎添翼数n是,其中,则,M的个位数字为任意一个十位数字为0的三位数M,它的“如虎添翼数”与M的个位数字之和能被11整除.(3)百位数字和十位数字和为:能被17整除是千位,则是三位数,取最大时,取最大,即能被17整除符合的最大值为【点睛】本题考查了列代数式,整除,整式的加减,一元一次方程的应用,理解题意是解题的关键.
相关试卷
这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。
这是一份【真题汇编】最新中考数学模拟考试 A卷(含答案及详解),共22页。试卷主要包含了如图,在中,,,则的值为,下列方程是一元二次方程的是,多项式去括号,得,若,则的值是等内容,欢迎下载使用。
这是一份【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解),共25页。试卷主要包含了下列计算正确的是,-6的倒数是,已知ax2+24x+b=等内容,欢迎下载使用。
