沪科版九年级下册第25章 投影与视图综合与测试同步训练题
展开
这是一份沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共21页。试卷主要包含了如图,该几何体的左视图是,如图所示的几何体的主视图为等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面四个立体图形中,从正面看是三角形的是( )A. B. C. D.2、下列几何体中,其三视图完全相同的是( )A. B.C. D.3、如图,几何体的左视图是( )A. B. C. D.4、如图为某几何体的三视图,则该几何体是( )A.圆锥 B.圆柱 C.三棱柱 D.四棱柱5、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为( )A. B.C. D.6、如图,该几何体的左视图是( )A. B. C. D.7、如图所示的几何体的主视图为( )A. B. C. D.8、如图,将一块含30°角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB=10,BE=3,则AB在直线m上的正投影的长是( )A.5 B.4 C.3+4 D.4+49、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是( )A. B. C. D.10、如图是一个几何体的实物图,则其主视图是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,最多和最少需要的小立方块相差______个.2、三视图中的三个视图完全相同的几何体可能是________(列举出两种即可).3、如图是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为_______.4、一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),这个零件的表面积是_______cm2.5、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号. —————— —————— —————— ——————三、解答题(5小题,每小题10分,共计50分)1、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请你分别画出从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_______个小立方块;(3)①图中的几何体的表面积(包括与桌面接触的部分)为_______;②若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_______,_______.2、(1)如图,由几个棱长为1的正方体组成的一个几何体.①请在方格纸中用实线画出这个几何体从不同方向看到的图形;②该几何体的表面积是______平方单位(包括底面积)(2)如图,平面上有四个点A,B,C,D,按照以下要求作图并解答问题:①作直线AD;②作射线CB交直线AD于点E;③连接AC,BD交于点F;④若图中F是AC的一个三等分点,AF<FC,已知线段AC上所有线段之和为24cm,则AF的长为___cm.3、小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的?4、如图是某几何体从正面、左面、上面看到的形状图.(1)这个几何体的名称是________.(2)若从正面看到的长方形的宽为4cm,长为9cm,从左面看到的宽为3cm,从上面看到的直角三角形的斜边为5cm,这个几何体中所有棱长的和是多少?它的侧面积是多少?5、如图所示是由6个大小相同的小立方体搭成的几何体.,请你画出它的主视图与左视图. -参考答案-一、单选题1、C【分析】找到从正面看所得到的图形为三角形即可.【详解】解:A、主视图为正方形,不符合题意;B、主视图为圆,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2、A【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3、C【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是: .故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4、C【分析】根据三视图判断该几何体即可.【详解】解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.故选:C.【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.5、C【分析】先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得.【详解】解:由题意得:观察这个立体图形的正面如下:则它的俯视图为故选:C.【点睛】本题考查了三视图,掌握理解俯视图的定义是解题关键.6、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.7、A【分析】根据主视图是从物体的正面看得到的视图即可求解.【详解】解:主视图如下故选:A.【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提.8、C【分析】根据30°角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明△ACD∽△CBE,再根据相似三角形的性质可得CD的长,进而得出DE的长.【详解】解:在Rt△ABC中,∠ABC=30°,AB=10,∴AC=AB=5,BC=AB•cos30°=10×,在Rt△CBE中,CE=,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∴Rt△ACD∽Rt△CBE,∴,∴CD=,∴DE=CD+BE=,即AB在直线m上的正投影的长是,故选:C.【点睛】本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键.9、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断.【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意.B、当7个小正方体如图分布时,符合题意,本选项不符合题意.C、没有符合题意的几何图形,本选项符合题意.D、当7个小正方体如图分布时,符合题意,本选项不符合题意.故选:C.【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.10、C【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题1、5【分析】根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+3+3+2+2+1=14个小正方体,再根据正面看与上面看的图形,得到俯视图中的第1列只有一处为3层,其余为1层,分三种情况考虑:最底层为3层,中间为3层,上面为3层;第2列只有一处为2层,上面或下面;第3列为1层,最少需要1+1+3+1+2+1=9个小正方体.【详解】解:由题意可得:最多需要14个小正方体,最少需要9个正方体,相差14-9=5个,故答案为:5.【点睛】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.2、正方体,球体【分析】几何体的三视图包括主视图、左视图、俯视图,根据定义选取三视图完全相同的几何体即可.【详解】解:正方体的主视图、左视图、俯视图都是正方形,且每个正方形大小相同;球体的主视图、左视图、俯视图,都是圆,且每个圆的大小相同.故答案为:正方体,球体【点睛】本题考查几何体的三视图,牢记主视图、左视图、俯视图的定义是做题的重点.3、【分析】由三视图判断出几何体的形状以及相关长度,根据圆柱的体积公式计算即可.【详解】解:由三视图可知:该几何体是圆柱,该圆柱的底面直径为2,高为3,∴这个几何体的体积为=,故答案为:.【点睛】本题考查了几何体的三视图,圆柱的体积,解题的关键是判断出该几何体为圆柱.4、200π【分析】根据三视图可得这个零件是圆柱体,根据表面积等于侧面积+上下两个底面的面积,可得答案.【详解】解:由三视图可得这个零件是圆柱体,表面积是:π×52×2+15×π×10=200π(cm2),故答案为:200π.【点睛】此题主要考查三视图的应用,解题的关键是根据图形特点得到这个零件是圆柱体.5、③①④②【分析】在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可.【详解】根据三视图的定义可知:第一个三视图所对应的几何体为③;第二个三视图所对应的几何体为①;第三个三视图对应的几何体为④;第四个三视图对应的几何体为②;故答案为:③①④②.【点睛】本题考查三视图,熟知三视图的定义是解题的关键.三、解答题1、(1)见解析;(2)12;(3)①1400;②1250,1550.【分析】(1)根据三视图可画出几何体的形状图;(2)根据正方体的性质,每行每列的小正方体都相等,都是3个,这样正方体的小正方体的个数应该为27个,现在已有15个,这样再补12个即可;(3)①从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最小时,每个位置数量尽量相等,可见解析中图,按图计算即可;②从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最大时,每个位置数量尽量相差最大,可见解析中图,按图计算即可.【详解】解:(1)由已知可得:(2)根据正方体的性质,每行每列都是3个小正方体,已知有(个)∴(个),故答案为:12;(3)①∵小正方体的棱长为5cm,∴小正方形的面积为,∴几何体表面积为,故答案为:;②如图搭建此时表面积为最小,几何体最小表面积为;如图搭建此时表面积为最大,几何体最大表面积为;故答案为:,.【点睛】本题考查了几何体的三视图,根据三视图计数,计算表面积,根据小正方体的数量计算表面积是本题的难点,了解什么情况表面积最小,什么情况表面积最大是解题关键.2、(1)①见解析;②36;(2)①见解析;②见解析;③见解析;④4【分析】(1)从正面看:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形;从左面看:与从正面看到的相同;从上面看:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形;据此解答即可;②表面积=几何体6个面的面积之和,即可求解;(2)①②③根据题意要求画图即可;④由题意可得AC=3AF,FC=2AF,然后根据线段AC上所有线段之和为24cm即可求出AF的长;【详解】解:(1)①如图所示:②该几何体的表面积是6×6=36平方单位;(2)①如图所示;②如图所示;③如图所示;④因为F是AC的一个三等分点,AF<FC,所以AC=3AF,FC=2AF,因为线段AC上所有线段之和为24cm,所以AF+CF+AC=24,即AF+2AF+3AF=24,即6AF=24,所以AF的长为4cm.故答案为:4【点睛】本题考查了组合体的三视图、线段、射线以及直线的有关知识,属于基础题型,熟练掌握相关的基础知识是解题关键.3、右边一幅照片是下午拍摄的【分析】根据人和影子的位置,结合投影的概念,分别判断即可得到正确答案.【详解】右边一幅照片是下午拍摄的.因为天安门坐北朝南,由人影在人身后偏右,推知太阳在西南方向,此时是下午时间.【点睛】本题考查投影的概念,能够结合物体和影子的位置进行准确判断是解此类题的关键.4、(1)直三棱柱;(2)所有棱长的和是51cm,它的侧面积为108cm2【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出棱长和与侧面积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的所有棱长之和为:(3+4+5)×2+9×3=51(cm);它的侧面积为:(3+4+5)×9=108(cm2)答:所有棱长的和是51cm,它的侧面积为108cm2.【点睛】此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键.5、主视图与左视图见详解.【分析】根据图示确定几何体的三视图即可得到答案,从正面看有三层,从上往下个数分别为1,1,3个,从左边看由2列,从左往右分别为3,1个小正方形,据此作出主视图和左视图即可.【详解】解:由几何体可知,该几何体的主视图和左视图依次为:【点睛】本题考查了简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.
相关试卷
这是一份初中数学第24章 圆综合与测试练习,共29页。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试当堂检测题,共22页。试卷主要包含了如图所示的几何体的左视图为等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试同步达标检测题,共22页。