2021学年第25章 投影与视图综合与测试综合训练题
展开
这是一份2021学年第25章 投影与视图综合与测试综合训练题,共22页。试卷主要包含了如图所示的几何体的俯视图是,下列立体图形的主视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体的左视图是( )A. B. C. D.2、如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )A. B.C. D.3、如图,将一个装了一半水的密闭圆柱形玻璃杯水平放置时,水面的形状是( )A.圆 B.梯形 C.长方形 D.椭圆4、如图所示的几何体的俯视图是( )A. B. C. D.5、下列立体图形的主视图是( )A. B. C. D.6、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )A. B. C. D.7、如图是由5个完全相同的小正方体组成的立体图形,这个立体图形的主视图是( )A. B.C. D.8、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )A. B. C. D.9、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是( )A. B. C. D.10、下面左侧几何体的主视图是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某立体图形的三视图中,主视图是矩形,请写出一个符合题意的立体图形名称:_________.2、一个几何体是由一些大小相同的校正方体摆成的,从正面看与从上面看得到的形状如图所示,则组成这个几何体的校正方体最多有_________个3、如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则搭成的几何体小立方体的个数最大是________.4、一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为______.(结果保留)5、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号. —————— —————— —————— ——————三、解答题(5小题,每小题10分,共计50分)1、如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.2、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请你分别画出从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_______个小立方块;(3)①图中的几何体的表面积(包括与桌面接触的部分)为_______;②若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_______,_______.3、(1)如图,由几个棱长为1的正方体组成的一个几何体.①请在方格纸中用实线画出这个几何体从不同方向看到的图形;②该几何体的表面积是______平方单位(包括底面积)(2)如图,平面上有四个点A,B,C,D,按照以下要求作图并解答问题:①作直线AD;②作射线CB交直线AD于点E;③连接AC,BD交于点F;④若图中F是AC的一个三等分点,AF<FC,已知线段AC上所有线段之和为24cm,则AF的长为___cm.4、如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,问最多可以取走几个小立方块.5、用小正方体搭成一个几何体,使得从正面看、从上面看该几何体得到的图形如图所示.问: (1)这样的几何体只有一种吗?它最多需要多少个小正方体?(2)它最少需要多少个小正方体?请分别画出这两种情况下从左面看该几何体得到的图形. -参考答案-一、单选题1、D【分析】根据左视图的定义即可得.【详解】解:左视图是指从左面观察几何体所得到的视图,这个几何体的左视图是,故选:D.【点睛】本题考查了左视图,熟记定义是解题关键.2、B【分析】根据既可以堵住圆形空洞,又可以堵住方形空洞从物体的三视图中即有圆形又有正方形的物体可以堵住空洞,然后对各选项的视图进行一一分析即可.【详解】解:∵既可以堵住圆形空洞,又可以堵住方形空洞,∴从物体的三视图来看,三视图中具有圆形和方形的可以堵住带有圆形空洞和方形空洞的小木板,A.正方体的三视图都是正方形,没有圆形,不可以是选项A;B.圆柱形的直径与高相等时的正视图与左视图都是正方形,俯视图是圆形,具有圆形与正方形,可以是选项B,C.圆锥的正视图与左视图都是三角形,俯视图数圆形,没有方形,不可以是选项C;D.球体的三视图都是圆形,没有方形,不可以是选项D.故选择B.【点睛】本题考查物体能堵住圆形空洞和方形空洞,实际上是考查物体的视图,掌握物体三视图中找出具有圆形和方形的物体是解题关键.3、C【分析】根据水平面与圆柱的底面垂直,可得从上面看,水面的形状为长方形,即可求解.【详解】解:∵水平面与圆柱的底面垂直,∴从上面看,水面的形状为长方形.故选:C【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从前面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.4、D【分析】根据从上面看得到的图形是俯视图,可得答案.【详解】从上面看得到的图形是故选D【点睛】本题考查了三视图的知识,掌握从上边看得到的图形是俯视图是关键.5、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6、B【分析】根据左视图是从左面看得到的图形,可得答案.【详解】解:从左边看,上面一层是一个正方形,下面一层是两个正方形,故选B【点睛】本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.7、B【分析】从正面看到的平面图形是主视图,根据主视图的含义逐一判断即可.【详解】解:从正面可以看到2行3列的小正方形图形,第1行1个正方形,第2行3个正方形,按1,2,1的方式排列,所以主视图是B,故选B【点睛】本题考查的是三视图,掌握识别主视图是解本题的关键,注意的是能看到的棱都要画成实线,看不到的棱画成虚线.8、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论.【详解】解:根据左视图的定义,该几何体的左视图是:故选:C .【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键.9、A【分析】根据主视图的概念求解即可.【详解】解:由题意可得,该几何体的主视图是:.故选:A.【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念.10、A【分析】找出从几何体的正面看所得到的图形即可.【详解】解:从几何体的正面看,是一行两个并列的矩形.故选:A.【点睛】本题主要考查了几何体的三视图,准确分析判断是解题的关键.二、填空题1、圆柱【分析】根据三视图的定义求解即可.【详解】解:圆柱的主视图是矩形,故答案为:圆柱.【点睛】本题考查三视图,解题的关键是掌握三视图的定义.2、6【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方块最多有3+3=6块.故答案为:6.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.3、7【分析】根据俯视图和左视图确定每层的立方体的个数,即可求解.【详解】解:由俯视图易得最底层有4个立方体,由左视图易得第二层最多有3个立方体和最少有1个立方体,那么小立方体的个数可能是5个或6个或7个.故答案为:7【点睛】此题考查了几何体的三视图,解题的关键是根据几何体的三视图确定各层的立方体的个数.4、【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,相加即可得出该几何体的全面积.【详解】解:由图示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:,∴圆锥的侧面积为:,底面圆的面积为:,∴该几何体的全面积为:,故答案为:.【点睛】此题主要考查了由三视图判断几何体,圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.5、③①④②【分析】在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可.【详解】根据三视图的定义可知:第一个三视图所对应的几何体为③;第二个三视图所对应的几何体为①;第三个三视图对应的几何体为④;第四个三视图对应的几何体为②;故答案为:③①④②.【点睛】本题考查三视图,熟知三视图的定义是解题的关键.三、解答题1、见解析【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.2、(1)见解析;(2)12;(3)①1400;②1250,1550.【分析】(1)根据三视图可画出几何体的形状图;(2)根据正方体的性质,每行每列的小正方体都相等,都是3个,这样正方体的小正方体的个数应该为27个,现在已有15个,这样再补12个即可;(3)①从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最小时,每个位置数量尽量相等,可见解析中图,按图计算即可;②从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最大时,每个位置数量尽量相差最大,可见解析中图,按图计算即可.【详解】解:(1)由已知可得:(2)根据正方体的性质,每行每列都是3个小正方体,已知有(个)∴(个),故答案为:12;(3)①∵小正方体的棱长为5cm,∴小正方形的面积为,∴几何体表面积为,故答案为:;②如图搭建此时表面积为最小,几何体最小表面积为;如图搭建此时表面积为最大,几何体最大表面积为;故答案为:,.【点睛】本题考查了几何体的三视图,根据三视图计数,计算表面积,根据小正方体的数量计算表面积是本题的难点,了解什么情况表面积最小,什么情况表面积最大是解题关键.3、(1)①见解析;②36;(2)①见解析;②见解析;③见解析;④4【分析】(1)从正面看:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形;从左面看:与从正面看到的相同;从上面看:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形;据此解答即可;②表面积=几何体6个面的面积之和,即可求解;(2)①②③根据题意要求画图即可;④由题意可得AC=3AF,FC=2AF,然后根据线段AC上所有线段之和为24cm即可求出AF的长;【详解】解:(1)①如图所示:②该几何体的表面积是6×6=36平方单位;(2)①如图所示;②如图所示;③如图所示;④因为F是AC的一个三等分点,AF<FC,所以AC=3AF,FC=2AF,因为线段AC上所有线段之和为24cm,所以AF+CF+AC=24,即AF+2AF+3AF=24,即6AF=24,所以AF的长为4cm.故答案为:4【点睛】本题考查了组合体的三视图、线段、射线以及直线的有关知识,属于基础题型,熟练掌握相关的基础知识是解题关键.4、最多可以取走16个小立方块.【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个.【详解】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:答:最多可以取走16个小立方块.【点睛】本题主要考查了几何体的表面积,熟知几何体表面积的定义以及正方体的表面积公式是解答本题的关键.5、(1)不止一种,最多14个;(2)最小10个,画图见解析【分析】(1)由第2层的正方体的个数不同,可得这样的几何体不止一种,再在俯视图的基础上确定每层正方体的数量最多时的正方体的数量,从而可得答案;(2)在俯视图的基础上确定每层正方体的数量最小时的正方体的数量,从而可得答案.【详解】解: (1)这样的几何体不止一种,正方体最多时的俯视图为:其中正方形中的数字表示正方体的数量,所以最多需要6+6+2=14个; (2)最少需要4+4+2=10个,正方体个数最多时的左视图为:正方体个数最小时俯视图为:此时左视图为:或正方体个数最小时俯视图为:此时左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:【点睛】本题考查的是三视图,掌握三视图的定义,清晰的分类讨论是画图的关键.
相关试卷
这是一份沪科版九年级下册第25章 投影与视图综合与测试随堂练习题,共19页。试卷主要包含了如图所示的几何体的俯视图是,下列物体的左视图是圆的为等内容,欢迎下载使用。
这是一份数学沪科版第25章 投影与视图综合与测试当堂检测题,共19页。试卷主要包含了如图所示的几何体的俯视图是,如图,身高1.5米的小明.,下面图形是某几何体的三视图,下列立体图形的主视图是等内容,欢迎下载使用。
这是一份沪科版第25章 投影与视图综合与测试课后测评,共19页。试卷主要包含了如图所示的几何体,它的左视图是等内容,欢迎下载使用。