【真题汇总卷】2022年河南省平顶山市中考数学模拟测评 卷(Ⅰ)(精选)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )
A.B.C.D.
2、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )
A.0个B.1个C.2个D.无法确定
3、现有四张卡片依次写有“郑”“外”“加”“油”四个字(四张卡片除字不同外其他均相同),把四张卡片背面向上洗匀后,从中随机抽取两张,则抽到的汉字给好是“郑”和“外”的概率是( )
A.B.C.D.
4、几个同学打算合买一副球拍,每人出7元,则还少4元;每人出8元,就多出3元.他们一共有( )个人.
A.6B.7C.8D.9
5、如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD为黄金矩形,宽AD=﹣1,则长AB为( )
A.1B.﹣1C.2D.﹣2
6、如图,在△ABC和△DEF中,AC∥DF,AC=DF,点A、D、B、E在一条直线上,下列条件不能判定△ABC≌△DEF的是( ).
A.B.
C.D.
7、在下列运算中,正确的是( )
A.a3•a2=a6B.(ab2)3=a6b6
C.(a3)4=a7D.a4÷a3=a
8、将一长方形纸条按如图所示折叠,,则( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.55°B.70°C.110°D.60°
9、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC沿AC翻折,得到△ADC,再将△ADC沿AD翻折,得到△ADE,连接BE,则tan∠EBC的值为( )
A.B.C.D.
10、下列图形绕直线旋转一周,可以得到圆柱的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=29°,∠BDA'=90°,则∠A'EC的大小为______.
2、计算:6423=_____.
3、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=kx(k≠0)的图象,与大正方形的一边交于点A(32,4),且经过小正方形的顶点B.求图中阴影部分的面积为 _____.
4、抛物线y=x2+t与x轴的两个交点之间的距离为4,则t的值是______.
5、若a=3,b=5且a<0,b>0,则a3+2b=________.
三、解答题(5小题,每小题10分,共计50分)
1、计算:.
2、列方程或方程组解应用题:
某校积极推进垃圾分类工作,拟采购30L和120L两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L垃圾桶共需付费1000元;采购10个30L垃圾桶和5个120L垃圾桶共需付费700元,求30L垃圾桶和120L垃圾桶的单价.
3、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.
图1 图2
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)如图1,求证:;
(2)如图2,若,,求的值;
(3)如图1,当,,求时,求的值.
4、计算:.
5、如图,点,是线段上的点,点为线段的中点.在线段的延长线上,且.
(1)求作点(要求:尺规作图,不写作法,保留作图痕迹);
(2)若,,,求线段的长度;
(3)若,请说明:点是线段的中点.
-参考答案-
一、单选题
1、A
【分析】
看哪个几何体的三视图中有长方形,圆,及三角形即可.
【详解】
解:、三视图分别为正方形,三角形,圆,故选项符合题意;
、三视图分别为三角形,三角形,圆及圆心,故选项不符合题意;
、三视图分别为正方形,正方形,正方形,故选项不符合题意;
、三视图分别为三角形,三角形,矩形及对角线,故选项不符合题意;
故选:A.
【点睛】
本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.
2、C
【分析】
根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论
【详解】
解:∵抛物线的顶点坐标为(1,-4),
∴
∴
∴
把(1,-4)代入,得,
∴
∴
∴
∴抛物线与轴有两个交点
故选:C
【点睛】
本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
时,抛物线与x轴没有交点
3、C
【分析】
列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】
解:列表如下:
由表可知,共有12种等可能结果,其中抽到的汉字恰好是“郑”和“外”的有2种结果,
所以抽到的汉字恰好是“郑”和“外”的概率为.
故选:C.
【点睛】
本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
4、B
【分析】
依题意,按照一元一次方程定义和实际应用,列方程计算,即可;
【详解】
由题知,设合买球拍同学的人数为;
∴ ,可得:
∴故选
【点睛】
本题主要考查一元一次方程的实际应用,关键在熟练审题和列方程计算;
5、C
【分析】
根据黄金矩形的定义,得出宽与长的比例即可得出答案.
【详解】
解:黄金矩形的宽与长的比等于黄金数,
,
.
故选:C.
【点睛】
本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.
6、D
【分析】
根据各个选项中的条件和全等三角形的判定可以解答本题.
【详解】
解:∵AC∥DF,
∴∠A=∠EDF,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;
∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;
∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;
∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;
故选:D.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
7、D
【分析】
由;;,判断各选项的正误即可.
【详解】
解:A中,错误,故本选项不合题意;
B中,错误,故本选项不合题意;
C中,错误,故本选项不合题意;
D中,正确,故本选项符合题意.
故选:D.
【点睛】
本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.
8、B
【分析】
从折叠图形的性质入手,结合平行线的性质求解.
【详解】
解:由折叠图形的性质结合平行线同位角相等可知,,
,
.
故选:B.
【点睛】
本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.
9、A
【分析】
解:如图,连接,交于 过作于 先求解 设 再利用勾股定理构建方程组&x2+y2=9&3+x2+y2=2452 ,再解方程组即可得到答案.
【详解】
解:如图,连接,交于 过作于
由对折可得:
∴AB=AD=5,AD⊥CE,CH=HE,
∵12ADCH=12ACCD,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴CH=125,CE=245,
设
∴&x2+y2=9&3+x2+y2=2452
解得:&x=2125&y=7225 或&x=2125&y=-7225 (舍去)
∴BM=6+2125=17125,
∴tan∠EBC=722517125=72171=819.
故选A
【点睛】
本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键.
10、A
【分析】
根据面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,直角梯形绕直角边旋转是圆台,半圆案绕直径旋转是球,可得答案.
【详解】
解:A.旋转后可得圆柱,故符合题意;
B. 旋转后可得球,故不符合题意;
C. 旋转后可得圆锥,故不符合题意;
D. 旋转后可得圆台,故不符合题意;
故选:A.
【点睛】
本题考查了面动成体的知识,熟记各种图形旋转得出的立体图形是解题关键.
二、填空题
1、32°
【分析】
利用折叠性质得∠ADE=∠A'DE=45°,∠AED=∠A'ED,再根据三角形外角性质得∠CED=74°,利用邻补角得到∠AED=106°,则∠A'ED=106°,然后利用∠A'EC=∠A'ED-∠CED进行计算即可.
【详解】
解:∵∠BDA'=90°,
∴∠ADA'=90°,
∵△ABC纸片沿DE折叠,使点A落在图中的A'处,
∴∠ADE=∠A'DE=45°,∠AED=∠A'ED,
∵∠CED=∠A+∠ADE=29°+45°=74°,
∴∠AED=106°,
∴∠A'ED=106°,
∴∠A'EC=∠A'ED-∠CED=106°-74°=32°.
故答案为:32°.
【点睛】
本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
个知识点是解题关键.
2、16
【分析】
依题意,按照幂的定义及形式,对底数进行转换,利用其性质计算即可;
【详解】
由题知,64=43,∴ 6423=(43)23=43×23=42=16;
故填:16;
【点睛】
本题主要考查幂的定义性质及其底数的灵活转换,关键在熟练其定义;
3、40
【分析】
根据待定系数法求出k即可得到反比例函数的解析式;利用反比例函数系数k的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积=大正方形的面积-小正方形的面积即可求出结果.
【详解】
解:∵反比例函数y=kx的图象经过点A(32,4),
∴k=32×4=6,
∴反比例函数的解析式为y=6x;
∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,
∴设B点的坐标为(m,m),
∵反比例函数y=6x的图象经过B点,
∴m=6m,
∴m2=6,
∴小正方形的面积为4m2=24,
∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(32,4),
∴大正方形在第一象限的顶点坐标为(4,4),
∴大正方形的面积为4×42=64,
∴图中阴影部分的面积=大正方形的面积-小正方形的面积=64-24=40.
【点睛】
本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数k的几何意义,正方形的性质,熟练掌握反比例函数系数k的几何意义是解决问题的关键.
4、-4
【分析】
设抛物线y=x2+t与x轴的两个交点的横坐标为x1,x2, 则x1,x2是x2+t=0的两根,且t<0, 再利用两个交点之间的距离为4列方程,再解方程可得答案.
【详解】
解:设抛物线y=x2+t与x轴的两个交点的横坐标为x1,x2,
∴x1,x2是x2+t=0的两根,且t<0,
∴x1=-t,x2=--t,
∵两个交点之间的距离为4,
∴-t---t=4,
∴2-t=4,
解得:t=-4, 经检验:t=-4是原方程的根且符合题意,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:-4.
【点睛】
本题考查的是二次函数与x轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与x轴的交点坐标”是解本题的关键.
5、-17
【分析】
先根据a=3,b=5且a<0,b>0求出a、b的值,然后代入a3+2b计算.
【详解】
解:∵a=3,b=5,
∴a=±3,b=±5,
∵a<0,b>0,
∴a=-3,b=5,
∴a3+2b= (-3)3+2×5=-17.
故答案为:-17.
【点睛】
本题考查了绝对值的知识,以及求代数式的值,正确求出a、b的值是解答本题的关键.
三、解答题
1、6
【分析】
根据公式、及算术平方根的概念逐个求解即可.
【详解】
解:原式.
【点睛】
本题考查了、及算术平方根的概念,属于基础题,计算过程中细心即可.
2、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元
【分析】
设垃圾桶的单价是元,垃圾桶的单价是元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000 ;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700 ;根据这两个等量关系列出方程组并解方程组即可.
【详解】
设垃圾桶的单价是元,垃圾桶的单价是元,
依题意得:,
解得:.
即垃圾桶的单价是20元,垃圾桶的单价是100元.
【点睛】
本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.
3、
(1)证明见解析
(2)
(3)
【分析】
(1)根据四边形,四边形都是平行四边形,得到和,然· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
后证明,即可证明出;
(2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
(3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
(1)
解:∵四边形EFGH是平行四边形
∴
∴
∵四边形ABCD是平行四边形
∴
∴
在和中
∴
∴
∴
∴;
(2)
解:如图所示,作于M点,设
∵四边形和四边形都是平行四边形,
∴四边形和四边形都是矩形
∴
∴
∵
∴,
∴
∴
∴
∵
∴
由(1)得:
∴
∴;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)
解:如图所示,过点E作于M点
∵四边形ABCD是平行四边形
∴
∵
∴,即
∵
∴
∴
∴
∴
设
∵
∴
∴
∴
由(1)得:
∴
∴
过点E作,交BD于N
∵
∴
∴
∴
设
∴
∴
∵
∴
∵
∴
∴
∵
∴
∴
∴
解得:或(舍去)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
由勾股定理得:
∴.
【点睛】
此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
4、
【详解】
解:原式
.
【点睛】
本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.
5、
(1)图见解析
(2)
(3)说明过程见解析
【分析】
(1)先以点为圆心、长为半径画弧,交延长线于点,再以点为圆心、长为半径画弧,交延长线于点,然后以点为圆心、长为半径画弧,交延长线于点即可得;
(2)先根据线段的和差可得,再根据线段中点的定义可得,然后根据可得,从而可得,最后根据线段的和差即可得;
(3)先根据,可得,再根据线段中点的定义可得,从而可得,据此可得.
(1)
解:如图,点即为所作.
(2)
解:,
,
点为线段的中点,
,
,
,
,
,
;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)
解:,,
,即,
点为线段的中点,
,
,
,即,
故点是线段的中点.
【点睛】
本题考查了作线段、与线段中点有关的计算,熟练掌握线段的和差运算是解题关键.
郑
外
加
油
郑
外,郑
加,郑
油,郑
外
郑,外
加,外
油,外
加
郑,加
外,加
油,加
油
郑,油
外,油
加,油
【真题汇总卷】2022年上海市普陀区中考数学模拟专项测评 A卷(精选): 这是一份【真题汇总卷】2022年上海市普陀区中考数学模拟专项测评 A卷(精选),共26页。试卷主要包含了有下列说法,下列四个实数中,无理数是,下列方程组中,二元一次方程组有等内容,欢迎下载使用。
【真题汇总卷】2022年河南省周口市中考数学模拟真题测评 A卷(含答案解析): 这是一份【真题汇总卷】2022年河南省周口市中考数学模拟真题测评 A卷(含答案解析),共27页。
【真题汇总卷】2022年福建省长汀县中考数学模拟专项测评 A卷(精选): 这是一份【真题汇总卷】2022年福建省长汀县中考数学模拟专项测评 A卷(精选),共22页。试卷主要包含了下列说法正确的是,在中,,,则,定义一种新运算等内容,欢迎下载使用。